

BSI Standards Publication

Industrial-process control valves

Part 8-3: Noise considerations — Control valve aerodynamic noise prediction method

...making excellence a habit."

National foreword

This British Standard is the UK implementation of EN 60534-8-3:2011. It is identical to IEC 60534-8-3:2010. It supersedes BS EN 60534-8-3:2000 which will be withdrawn on 1 January 2014.

The UK participation in its preparation was entrusted by Technical Committee GEL/65, Measurement and control, to Subcommittee GEL/65/2, Elements of systems.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© BSI 2011

ISBN 978 0 580 67340 5

ICS 17.140.20; 23.060.40; 25.040.40

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2011.

Amendments issued since publication

Amd. No. Date Text affected

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 60534-8-3

January 2011

ICS 17.140.20; 23.060.40; 25.040.40

Supersedes EN 60534-8-3:2000

English version

Industrial-process control valves -Part 8-3: Noise considerations -Control valve aerodynamic noise prediction method (IEC 60534-8-3:2010)

Vannes de régulation des processus industriels -Partie 8-3: Considérations sur le bruit -Méthode de prédiction du bruit aérodynamique des vannes de régulation (CEI 60534-8-3:2010) Stellventile für die Prozessregelung -Teil 8-3: Geräuschbetrachtungen -Berechnungsverfahren zur Vorhersage der aerodynamischen Geräusche von Stellventilen (IEC 60534-8-3:2010)

This European Standard was approved by CENELEC on 2011-01-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2011 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of document 65B/765/FDIS, future edition 3 of IEC 60534-8-3, prepared by IEC/SC 65B, Devices & process analysis, of IEC TC 65, Industrial-process measurement, control and automation, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 60534-8-3 on 2011-01-01.

This European Standard supersedes EN 60534-8-3:2000.

The significant technical changes with respect to EN 60534-8-3:2000 are as follows:

- predicting noise as a function of frequency;
- using laboratory data to determine the acoustical efficiency factor.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.

The following dates were fixed:

_	latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2011-10-01
_	latest date by which the national standards conflicting with the EN have to be withdrawn	(dow)	2014-01-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 60534-8-3:2010 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

[1] IEC 60534-2-1 NOTE Harmonized as EN 60534-2-1	۱.
---	----

[2] IEC 60534-8-1 NOTE Harmonized as EN 60534-8-1.

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	<u>Year</u>	Title	<u>EN/HD</u>	Year
IEC 60534	Series	Industrial-process control valves	EN 60534	Series
IEC 60534-1	-	Industrial-process control valves - Part 1: Control valve terminology and general considerations	EN 60534-1	-

CONTENTS

ΙΝΤ	ROD	UCTION	۱	6	
1	I Scope7				
2	Normative references			7	
3	Terms and definitions				
4	Syml	ools		9	
5	Valv	es with	standard trim	12	
	5.1	Pressu	ires and pressure ratios	12	
	5.2	Regim	e definition	13	
	5.3	Prelim	inary calculations	14	
		5.3.1	Valve style modifier <i>F</i> _d	14	
		5.3.2	Jet diameter D _i	14	
		5.3.3	Inlet fluid density ρ_1	14	
	5.4	Interna	al noise calculations	15	
		5.4.1	Calculations common to all regimes	15	
		5.4.2	Regime dependent calculations	16	
		5.4.3	Downstream calculations	18	
		5.4.4	Valve internal sound pressure calculation at pipe wall	19	
	5.5	Pipe ti	ansmission loss calculation	20	
	5.6	Extern	al sound pressure calculation	21	
	5.7	Calcul	ation flow chart	22	
6	Valv	es with	special trim design	22	
	6.1	Gener	al	22	
	6.2	Single	stage, multiple flow passage trim	22	
	6.3	Single steps)	flow path, multistage pressure reduction trim (two or more throttling	23	
	6.4	Multip	ath, multistage trim (two or more passages and two or more stages)	25	
7	Valv	es with	higher outlet Mach numbers	27	
	7.1	Gener	al	27	
	7.2	Calcul	ation procedure	27	
8	Valv	es with	experimentally determined acoustical efficiency factors	28	
9	Com	binatior	of noise produced by a control valve with downstream installed two		
	or m	ore fixe	d area stages	29	
Annex A (informative) Calculation examples					
Bib	liogra	phy		46	
Fig	ure 1	– Singl	e stage, multiple flow passage trim	23	
Fig	Figure 2 – Single flow path, multistage pressure reduction trim				
Fig	Figure 3 – Multipath, multistage trim (two or more passages and two or more stages)26				
Fig	ure 4	– Contr	ol valve with downstream installed two fixed area stages	30	
Tal	ole 1 -	- Nume	rical constants N	15	
Tał	ole 2 -	- Typica	al values of valve style modifier <i>F</i> , (full size trim)	15	
Tal	ole 3 -	- Overv	iew of regime dependent equations	17	
	Table 5 – Overview of regime dependent equations				

60534-8-3 © IEC:2010

Table 4 – Typical values of A _n and St _p	. 18
Table 5 – Indexed frequency bands	. 19
Table 6 – Frequency factors G_X (f) and G_y (f)	. 21
Table 7 – "A" weighting factor at frequency f_i	. 22

INTRODUCTION

The mechanical stream power as well as acoustical efficiency factors are calculated for various flow regimes. These acoustical efficiency factors give the proportion of the mechanical stream power which is converted into internal sound power.

This method also provides for the calculation of the internal sound pressure and the peak frequency for this sound pressure, which is of special importance in the calculation of the pipe transmission loss.

At present, a common requirement by valve users is the knowledge of the sound pressure level outside the pipe, typically 1 m downstream of the valve or expander and 1 m from the pipe wall. This standard offers a method to establish this value.

The equations in this standard make use of the valve sizing factors as used in IEC 60534-1 and IEC 60534-2-1.

In the usual control valve, little noise travels through the wall of the valve. The noise of interest is only that which travels downstream of the valve and inside of the pipe and then escapes through the wall of the pipe to be measured typically at 1 m downstream of the valve body and 1 m away from the outer pipe wall.

Secondary noise sources may be created where the gas exits the valve outlet at higher Mach numbers. This method allows for the estimation of these additional sound levels which can then be added logarithmically to the sound levels created within the valve.

Although this prediction method cannot guarantee actual results in the field, it yields calculated predictions within $5 \, dB(A)$ for the majority of noise data from tests under laboratory conditions (see IEC 60534-8-1). The current edition has increased the level of confidence of the calculation. In some cases the results of the previous editions were more conservative.

The bulk of the test data used to validate the method was generated using air at moderate pressures and temperatures. However, it is believed that the method is generally applicable to other gases and vapours and at higher pressures. Uncertainties become greater as the fluid behaves less perfectly for extreme temperatures and for downstream pressures far different from atmospheric, or near the critical point. The equations include terms which account for fluid density and the ratio of specific heat.

NOTE Laboratory air tests conducted with up to 1 830 kPa (18,3 bar) upstream pressure and up to 1 600 kPa (16,0 bar) downstream pressure and steam tests up to 225 °C showed good agreement with the calculated values.

A rigorous analysis of the transmission loss equations is beyond the scope of this standard. The method considers the interaction between the sound waves existing in the pipe fluid and the first coincidence frequency in the pipe wall. In addition, the wide tolerances in pipe wall thickness allowed in commercial pipe severely limit the value of the very complicated mathematical approach required for a rigorous analysis. Therefore, a simplified method is used.

Examples of calculations are given in Annex A.

This method is based on the IEC standards listed in Clause 2 and the references given in the Bibliography.

INDUSTRIAL-PROCESS CONTROL VALVES -

Part 8-3: Noise considerations – Control valve aerodynamic noise prediction method

1 Scope

This part of IEC 60534 establishes a theoretical method to predict the external soundpressure level generated in a control valve and within adjacent pipe expanders by the flow of compressible fluids.

This method considers only single-phase dry gases and vapours and is based on the perfect gas laws.

This standard addresses only the noise generated by aerodynamic processes in valves and in the connected piping. It does not consider any noise generated by reflections from external surfaces or internally by pipe fittings, mechanical vibrations, unstable flow patterns and other unpredictable behaviour.

It is assumed that the downstream piping is straight for a length of at least 2 m from the point where the noise measurement is made.

This method is valid only for steel and steel alloy pipes (see Equations (21) and (23) in 5.5).

The method is applicable to the following single-stage valves: globe (straight pattern and angle pattern), butterfly, rotary plug (eccentric, spherical), ball, and valves with cage trims. Specifically excluded are the full bore ball valves where the product F_pC exceeds 50 % of the rated flow coefficient.

For limitations on special low noise trims not covered by this standard, see Clause 8. When the Mach number in the valve outlet exceeds 0,3 for standard trim or 0,2 for low noise trim, the procedure in Clause 7 is used

The Mach number limits in this standard are as follows:

	Mach number limit			
Mach number location	Clause 5 Standard trim	Clause 6 Noise-reducing trim	Clause 7 High Mach number applications	
Freely expanded jet M_j	No limit	No limit	No limit	
Valve outlet M _o	0,3	0,2	1,0	
Downstream reducer inlet M _r	Not applicable	Not applicable	1,0	
Downstream pipe M_2	0,3	0,2	0,8	

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60534 (all parts), Industrial-process control valves

IEC 60534-1, Industrial-process control valves – Part 1: Control valve terminology and general considerations

3 Terms and definitions

For the purposes of this document, all of the terms and definitions given in the IEC 60534 series and the following apply:

3.1

acoustical efficiency

η

ratio of the stream power converted into sound power propagating downstream to the stream power of the mass flow

3.2

external coincidence frequency

fg

frequency at which the external acoustic wavespeed is equal to the bending wavespeed in a plate of equal thickness to the pipe wall

3.3

internal coincidence frequency

f_o

lowest frequency at which the internal acoustic and structural axial wave numbers are equal for a given circumferential mode, thus resulting in the minimum transmission loss

3.4

fluted vane butterfly valve

butterfly valve which has flutes (grooves) on the face(s) of the disk. These flutes are intended to shape the flow stream without altering the seating line or seating surface

3.5

independent flow passage

flow passage where the exiting flow is not affected by the exiting flow from adjacent flow passages

3.6

peak frequency

*f*p

 $\ensuremath{\ensuremath{\mathsf{frequency}}}$ at which the internal sound pressure is maximum

3.7

valve style modifier

F_d

ratio of the hydraulic diameter of a single flow passage to the diameter of a circular orifice, the area of which is equivalent to the sum of areas of all identical flow passages at a given travel

4 Symbols

Symbol	Description	Unit
A	Area of a single flow passage	m ²
A_{η}	Valve correction factor for acoustical efficiency	Dimensionless
	(see Table 4)	
A _n	Total flow area of last stage of multistage trim with <i>n</i> stages at given travel	m ²
С	Flow coefficient (K_v and C_v)	Various (see IEC 60534- 1)
c _a	External speed of sound (dry air at standard conditions = 343 m/s)	m/s
Cn	Flow coefficient for last stage of multistage trim with <i>n</i> stages	Various (see IEC 60534- 1)
c _s	Speed of sound of the pipe (for steel = 5 000 m/s)	m/s
C _{VC}	Speed of sound in the <i>vena contracta</i> at subsonic flow conditions	m/s
c _{vcc}	Speed of sound in the vena contracta at critical flow conditions	m/s
c ₂	Speed of sound at downstream conditions	m/s
D	Valve outlet diameter	m
d	Diameter of a flow passage (for other than circular, use $d_{\rm H})$	m
d _H	Hydraulic diameter of a single flow passage	m
d _i	Smaller of valve outlet or expander inlet internal diameters	m
Di	Internal downstream pipe diameter	m
Dj	Jet diameter at the vena contracta	m
d _o	Diameter of a circular orifice, the area of which equals the sum of areas of all flow passages at a given travel	m
Fd	Valve style modifier	Dimensionless
FL	Liquid pressure recovery factor of a valve without attached fittings (see Note 4)	Dimensionless
F _{Ln}	Liquid pressure recovery factor of last stage of low noise trim	Dimensionless
F _{LP}	Combined liquid pressure recovery factor and piping geometry factor of a control valve with attached fittings (see Note 4)	Dimensionless
Fp	Piping geometry factor	Dimensionless
fg	External coincidence frequency	Hz
f _o	Internal coincidence pipe frequency	Hz
<i>f</i> p	Generated peak frequency	Hz
f _{pR}	Generated peak frequency in valve outlet or reduced diameter of expander	Hz
f _r	Ring frequency	Hz
f _s	Structural loss factor reference frequency = 1 Hz	Hz

- 1	0	_
	-	

Symbol	Description	Unit
G _x , G _y	Frequency factors (see Table 4)	Dimensionless
Ι	Length of a radial flow passage	m
/ _w	Wetted perimeter of a single flow passage	m
Lg	Correction for Mach number	dB (ref p_0)
L _{pe,1m} (f)	Frequency-dependent external sound-pressure level 1 m from pipe wall	dB(ref p_0)
L _{pAe,1m}	A-weighted overall sound-pressure level 1 m from pipe wall	dB(A) (ref p_0)
L _{pi}	Overall Internal sound-pressure level at pipe wall	dB (ref p_0)
L _{pi} (f)	Frequency-dependent internal sound-pressure level at pipe wall	dB (ref p _o)
L _{piR}	Overall Internal sound-pressure level at pipe wall for noise created by outlet flow in expander	dB (ref p_0)
L _{piR} (f)	Frequency-dependent internal sound-pressure level at pipe wall for noise created by outlet flow in expander	dB (ref p_0)
L _{piS} (f)	Combined internal frequency-dependent sound-pressure at the pipe wall, caused by the valve trim and expander	dB (ref p_0)
L _{wi}	Total internal sound power level	dB (ref W_{o})
Μ	Molecular mass of flowing fluid	kg/kmol
Mj	Freely expanded jet Mach number in regimes II to IV	Dimensionless
<i>M</i> jn	Freely expanded jet Mach number of last stage in multistage valve with <i>n</i> stages	Dimensionless
M _{j5}	Freely expanded jet Mach number in regime V	Dimensionless
Mo	Mach number at valve outlet	Dimensionless
M _R	Mach number in the entrance to expander	Dimensionless
M _{vc}	Mach number at the vena contracta	Dimensionless
M ₂	Mach number in downstream pipe	Dimensionless
ṁ	Mass flow rate	kg/s
Ν	Numerical constants (see Table 1)	Various
n _o	Number of independent and identical flow passages in valve trim	Dimensionless
p _a	Actual atmospheric pressure outside pipe	Pa (see Note 3)
p n	Absolute stagnation pressure at inlet of the last stage of multistage valve with <i>n</i> stages	Ра
p _o	Reference sound pressure = 2×10^{-5} (see Note 5)	Ра
p _s	Standard atmospheric pressure (see Note 1)	Ра
p _{vc}	Absolute <i>vena contracta</i> pressure at subsonic flow conditions	Ра
<i>p</i> ₁	Valve inlet absolute pressure	Pa
p ₂	Valve outlet absolute pressure	Ра
R	Universal gas constant = 8 314	$J/kmol \times K$
St	Strouhal number for peak frequency calculation (see Table 4)	Dimensionless

Symbol	Description	Unit
T _n	Inlet absolute temperature at last stage of multistage	К
	valve with <i>n</i> stages	
T _{vc}	Vena contracta absolute temperature at subsonic	К
τ	Nena contracta absoluto tomporaturo at critical	K
/ vcc	flow conditions	ĸ
<i>T</i> ₁	Inlet absolute temperature	K
<i>T</i> ₂	Outlet absolute temperature	K
TL(f)	Frequency-dependent transmission loss	dB
ts	Pipe wall thickness	m
Up	Gas velocity in downstream pipe	m/s
U _R	Gas velocity in the inlet of diameter expander	m/s
Wa	Sound power for noise crated by valve flow and propagating downstream	W
W _{aR}	Sound power for noise generated by the outlet flow and propagating downstream	W
W _m	Stream power of mass flow	W
W _{ms}	Stream power of mass flow rate at sonic velocity	W
W _{mR}	Converted stream power in the expander	W
Wo	Reference sound power = 10^{-12} (see Note 5)	W
X	Differential pressure ratio	Dimensionless
X _{VCC}	Vena contracta differential pressure ratio at critical flow conditions	Dimensionless
x _B	Differential pressure ratio at break point	Dimensionless
x _C	Differential pressure ratio at critical flow conditions	Dimensionless
XCE	Differential pressure ratio where region of constant acoustical efficiency begins	Dimensionless
α	Recovery correction factor	Dimensionless
β	Contraction coefficient for valve outlet or expander inlet	Dimensionless
γ	Specific heat ratio	Dimensionless
$\Delta L_{A}(f)$	A-Weighting correction based on frequency	dB
ΔTL	Damping factor for transmission loss	dB
η	Acoustical efficiency factor for noise created by valve flow (see Note 2)	Dimensionless
η_R	Acoustical efficiency factor for noise created by outlet flow in expander	Dimensionless
$\eta_{s}(f)$	Frequency-dependent structural loss factor	Dimensionless
ρ_1	Density of fluid at p_1 and T_1	kg/m ³
ρ_2	Density of fluid at p_2 and T_2	kg/m ³
ρ _n	Density of fluid at last stage of multistage valve with <i>n</i> stages at p_n and T_n	kg/m ³
ρ_{s}	Density of the pipe	kg/m ³
Φ	Relative flow coefficient	Dimensionless

Description

- 12 -

Unit

Subscripts

Symbol

е	Denotes external
i	Denotes internal or used as an index for the frequency band number
n	Denotes last stage of trim
р	Denotes peak
R	Denotes conditions in downstream pipe or pipe expander

NOTE 1 Standard atmospheric pressure is 101,325 kPa or 1,01325 bar.

NOTE 2 Subscripts 1, 2, 3, 4 and 5 denote regimes I, II, III, IV and V respectively.

NOTE 3 1 bar = 10^2 kPa = 10^5 Pa.

NOTE 4 For the purpose of calculating the *vena contracta* pressure, and therefore velocity, in this standard, pressure recovery for gases is assumed to be identical to that of liquids.

NOTE 5 Sound power and sound pressure are customarily expressed using the logarithmic scale known as the decibel scale. This scale relates the quantity logarithmically to some standard reference. This standard reference is 2×10^{-5} Pa for sound pressure and 10^{-12} W for sound power.

5 Valves with standard trim

5.1 Pressures and pressure ratios

There are several pressures and pressure ratios needed in the noise prediction procedure. They are given below. For noise considerations related to control valves the differential pressure ratio *x* is often used.

$$x = \frac{p_1 - p_2}{p_1}$$
(1)

The *vena contracta* is the region of maximum velocity and minimum pressure. This minimum pressure related to the inlet pressure, which cannot be less than zero absolute, is calculated as follows:

$$\frac{p_{vc}}{p_1} = 1 - \frac{x}{F_L^2}$$
(2)

NOTE 1 This equation is the definition of F_{L} for subsonic conditions.

NOTE 2 When the valve has attached fittings, $F_{\rm L}$ should be replaced with $F_{\rm LP}/F_{\rm p}$.

NOTE 3 The factor F_{L} is needed in the calculation of the *vena contracta* pressure. The *vena contracta* pressure is then used to calculate the velocity, which is needed to determine the acoustical efficiency factor.

At critical flow conditions, the pressure in the *vena contracta* and the corresponding differential pressure ratio when $p_2 = p_{vcc}$ are calculated as follows:

$$x_{vcc} = 1 - \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)}$$
(3)

The critical downstream pressure ratio where sonic flow in the *vena contracta* begins is calculated from the following equation:

60534-8-3 © IEC:2010

$$x_C = F_L^2 x_{vcc}$$
 (4)

NOTE 4 When the valve has attached fittings, $F_{\rm L}$ should be replaced with $F_{\rm LP}/F_{\rm p}$.

The correction factor α is the ratio of two pressure ratios:

a) the ratio of inlet pressure to outlet pressure at critical flow conditions;

b) the ratio of inlet pressure to vena contracta pressure at critical flow conditions.

It is defined as follows:

$$\alpha = \frac{1 - x_{vcc}}{1 - x_C} \tag{5}$$

The point at which the shock cell-turbulent interaction mechanism (regime IV) begins to dominate the noise spectrum over the turbulent-shear mechanism (regime III) is known as the break point. See 5.2 for a description of these regimes. The differential pressure ratio at the break point is calculated as follows:

$$x_{B} = 1 - \frac{1}{\alpha} \left(\frac{1}{\gamma}\right)^{\gamma/(\gamma-1)}$$
(6)

The differential pressure ratio at which the region of constant acoustical efficiency (regime V) begins is calculated as follows:

$$x_{CE} = 1 - \frac{1}{22 \alpha}$$
(7)

5.2 Regime definition

A control valve controls flow by converting potential (pressure) energy into turbulence. Noise in a control valve results from the conversion of a small portion of this energy into sound. Most of the energy is converted into heat.

The different regimes of noise generation are the result of differing sonic phenomena or reactions between molecules in the gas and the sonic shock cells. In regime I, the flow is subsonic and the gas is partially recompressed, thus the involvement of the factor F_L . Noise generation in this regime is predominantly dipole.

In regime II, sonic flow exists with interaction between shock cells and with turbulent choked flow mixing. Recompression decreases as the limit of regime II is approached.

In regime III, no isentropic recompression exists. The flow is supersonic, and the turbulent flow-shear mechanism dominates.

In regime IV, the shock cell structure diminishes as a Mach disk is formed. The dominant mechanism is shock cell-turbulent flow interaction.

In regime V, there is constant acoustical efficiency; a further decrease in p_2 will result in no increase in noise.

For a given set of operating conditions, the regime is determined as follows:

 $\begin{array}{llllllll} \mbox{Regime III} & \mbox{If } x_{vcc} & < & x \leq x_B \\ \mbox{Regime IV} & \mbox{If } x_B & < & x \leq x_{CE} \\ \mbox{Regime V} & \mbox{If } x_{CE} & < & x \end{array}$

5.3 Preliminary calculations

5.3.1 Valve style modifier *F*_d

In the case of multistage values, F_d applies only to the last stage.

The valve style modifier can be calculated by

$$F_{\rm d} = \frac{d_{\rm H}}{d_{\rm o}} \tag{8a}$$

The hydraulic diameter $d_{\rm H}$ of a single flow passage is determined by the following equation:

$$d_{\rm H} = \frac{4}{I_{\rm w}}$$
(8b)

The equivalent circular diameter d_0 of the total flow area is given as follows:

$$d_o = \sqrt{\frac{4 \cdot n_o \cdot A}{\pi}} \tag{8c}$$

Typical values of F_d are given in Table 2.

5.3.2 Jet diameter D_j

The jet diameter is given by the following equation:

$$D_{\rm j} = N_{14} F_{\rm d} \sqrt{C F_{\rm L}} \tag{9}$$

NOTE 1 N_{14} is a numerical constant, the values of which account for the specific flow coefficient (K_v or C_v) used. Values of the constant may be obtained from Table 1.

NOTE 2 Use the required C, not the valve rated value of C.

NOTE 3 When the valve has attached fittings, F_L should be replaced with F_{LP}/F_p .

5.3.3 Inlet fluid density ρ_1

Whenever possible it is preferred to use the actual fluid density as specified by the user. If this is not available, then a perfect gas is assumed, and the inlet density is calculated from the following equation:

$$\rho_1 = \frac{p_1}{RT_1} \tag{10}$$

Table 1 – Numerical constants N

• • •	Flow coefficient						
Constant	K _v	Cv					
N ₁₄	$4,9 \times 10^{-3}$	$4,6 \times 10^{-3}$					
N ₁₆	$4,23 \times 10^4$	$4,89 \times 10^4$					
NOTE Unlisted numerical constants are not used in this standard.							

Table 2 – Typical values of valve style modifier F_d (full size trim)

		Relative flow coefficient							
Valve type	Flow direction	Φ							
		0,10	0,20	0,40	0,60	0,80	1,00		
Globe, parabolic plug	To open	0,10	0,15	0,25	0,31	0,39	0,46		
	To close	0,20	0,30	0,50	0,60	0,80	1,00		
Globe, 3 V-port plug	Either*	0,29	0,40	0,42	0,43	0,45	0,48		
Globe, 4 V-port plug	Either*	0,25	0,35	0,36	0,37	0,39	0,41		
Globe, 6 V-port plug	Either*	0,17	0,23	0,24	0,26	0,28	0,30		
Globe, 60 equal diameter hole drilled cage	Either*	0,40	0,29	0,20	0,17	0,14	0,13		
Globe, 120 equal diameter hole drilled cage	Either*	0,29	0,20	0,14	0,12	0,10	0,09		
Butterfly, eccentric	Either	0.18	0.28	0.43	0.55	0.64	0.70		
Butterfly, swing-through (centered shaft), to 70°	Either	0,26	0,34	0,42	0,50	0,53	0,57		
Butterfly, fluted vane, to 70°	Either	0,08	0,10	0,15	0,20	0,24	0,30		
60° flat disk	Either						0,50		
Eccentric rotary plug	Either	0,12	0,18	0,22	0,30	0,36	0,42		
Segmented ball 90°	Either	0,60	0,65	0,70	0,75	0,78	0,98		
NOTE These values are typical only. Actual value	es are stated	d by the n	nanufactu	rer.					
* Limited $p_1 - p_2$ in flow to close direction.									

5.4 Internal noise calculations

5.4.1 Calculations common to all regimes

In each regime, the internal acoustic power W_a is equal to the product of the stream power W_m and the acoustical efficiency factor η , as shown in Equation 11.

$$W_a = \eta W_m \tag{11}$$

Although not required for this method, the total internal sound power level is calculated as follows:

$$L_{\rm wi} = 10 \log_{10} \frac{W_{\rm a}}{W_{\rm o}}$$
(12)

5.4.2 Regime dependent calculations

The equations to calculate the appropriate values of $W_{\rm m}$ and η are given in Table 3 for each regime. This allows the internal acoustic power W_a to be determined, using Equation (11).

The exponent A_η is – 4 for pure dipole noise sources as for free jets in a big expansion volume. The valve-related acoustic efficiency factor takes into account the effect of different geometries of valve body and fittings on the acoustical efficiency and the location inside the pipe behind the control valve (distance 6 x d_i). Hence, real A_η factors are different for various valves and fittings. Also this value can be dependent on the differential pressure ratio x. Typical average values are given in Table 4.

The Strouhal number St_p at the peak frequency lies typically in a range of 0,1 through 0,3 for free jets. Typical average values for different various valves and fittings are given in Table 4.

Valve or fitting	Flow direction	Aη	St _p
Globe, parabolic plug	Either	-4,2	0,19
Globe, V-port plug	Either	-4,2	0,19
Globe, ported cage design	Either	-3,8	0,2
Globe, multihole drilled plug or cage	To open	-4,8	0,2
Globe, multihole drilled plug or cage	To close	-4,4	0,2
Butterfly, eccentric	Either	-4,2	0,3
Butterfly, swing-through (centered shaft), to 70°	Either	-4,2	0,3
Butterfly, fluted vane, to 70°	Either	-4,2	0,3
Butterfly, 60° flat disk	Either	-4,2	0,3
Eccentric rotary plug	Either	-3,6	0,3
Segmented ball 90°	Either	-3,6	0,3
Drilled hole plate fixed resistance	Either	-4,8	0,2
Expander	Either	-3,0	0,2
NOTE 1 These values are typical only. Actual values are	e stated by the manufa	acturer.	

Table 4 – Typical values of \textbf{A}_{η} and \textbf{St}_{p}

NOTE I These values are typical only. Actual values are stated by the manufacturer.

NOTE 2 $\,$ Section 8 should be used, for those multihole trims, where the hole size and spacing is controlled to minimize noise.

5.4.3 Downstream calculations

The downstream mass density is calculated from the following equation, assuming $T_1=T_2$:

$$\rho_2 = \rho_1 \left(\frac{p_2}{p_1}\right) \tag{13}$$

The downstream temperature T2 may be determined by using thermodynamic isenthalpic relationships, provided that the necessary fluid properties are known. However, if the fluid properties are not known, T2 may be taken as approximately equal to T1. From the following equation, the downstream sonic velocity can be calculated:

$$c_2 = \sqrt{\frac{\gamma R T_2}{M}} \tag{14}$$

The Mach number at the valve outlet is calculated using Equation (15).

BS EN 60534-8-3:2011 60534-8-3 © IEC:2010

- 19 -

$$M_{o} = \frac{4 \,\dot{m}}{\pi \, D^{2} \, \rho_{2} \, c_{2}} \tag{15}$$

NOTE 1 M_{o} should not exceed 0.3. If M_{o} exceeds 0.3, then accuracy cannot be maintained, and the procedure in Clause 7 should be used.

The downstream pipe velocity correction is approximately:

$$L_{\rm g} = 16 \log_{10} \left(\frac{1}{1 - M_2} \right) (16)$$

where

$$M_2 = \frac{4 \dot{m}}{\pi D_i^2 \rho_2 c_2}$$
(17)

NOTE 2 For calculating L_q , M_2 is limited to 0,3.

5.4.4 Valve internal sound pressure calculation at pipe wall

To calculate the internal sound-pressure level referenced to p_{o} , the following equation is used:

$$L_{pi} = 10 \log_{10} \left[\frac{(3,2 \times 10^9) W_a \rho_2 c_2}{D_i^2} \right] + L_g$$
(18)

The frequency dependent internal sound pressure levels can be predicted from Equation (39) ([17]).

$$L_{pi}(f_i) = L_{pi} - 8 - 10 \cdot \log\left\{ \left[1 + \left(\frac{f_i}{2 \cdot f_p} \right)^{2.5} \right] \cdot \left[1 + \left(\frac{f_p}{2 \cdot f_i} \right)^{1.7} \right] \right\}$$
(19)

Index Frequency [Hz] 12,5 31,5 Index Frequency [Hz] Index Frequency [Hz]

Table 5 – Indexed frequency bands

NOTE 1 The constant -8 replaces the original constant -5,3 so that the overall level $-L_{pi}$ for more than 21 octaves becomes 0.

NOTE 2 Equation (19) should not be used outside of the frequency range (12,5 Hz - 20 000 Hz) as indicated in Table 5.

5.5 Pipe transmission loss calculation

The frequency-dependent transmission loss across the pipe wall is calculated as follows:

$$TL(f_{i}) = 10 \log_{10} \left[(8,25 \times 10^{-7}) \left(\frac{c_{2}}{t_{s} f_{i}} \right)^{2} \frac{G_{x}(f_{i})}{\left(\frac{\rho_{2} c_{2} + 2 \cdot \pi \cdot t_{s} \cdot f_{i} \cdot \rho_{s} \cdot \eta_{s}(f_{i})}{415 G_{y}(f_{i})} + 1 \right)} \left(\frac{p_{a}}{p_{s}} \right) \right] - \Delta TL$$
(20a)

where ΔTL is a damping factor depending on the pipe size:

$$\Delta TL = \begin{cases} 0 & \text{for } D > 0,15 \\ -16660 \cdot D^3 + 6370 \cdot D^2 - 813 \cdot D + 35,8 & \text{for } 0,05 \le D \le 0,15 \\ 9 & \text{for } D < 0,05 \end{cases}$$
(20b)

and $\boldsymbol{\eta}_s$ is the non-dimensional frequency-dependent structural loss factor:

$$\eta_s(f_i) = \sqrt{\frac{f_s}{100f_i}} \tag{20c}$$

NOTE 1 G_x and G_y are defined in Table 6.

NOTE 2 The ratio p_a/p_s is a correction for local barometric pressure.

The frequencies f_r , f_o and f_g are calculated from the following equations:

$$f_r = \frac{c_s}{\pi D_i}$$
(21)

$$f_o = \frac{f_r}{4} \left(\frac{c_2}{c_a} \right)$$
(22)

$$\mathbf{f}_{g} = \frac{\sqrt{3} \left(\mathbf{c}_{a}\right)^{2}}{\pi \,\mathbf{t}_{S}(\mathbf{c}_{s})} \tag{23}$$

NOTE 3 In Equations (22) and (23), $c_a = 343$ m/s for the speed of sound of dry air at standard conditions.

NOTE 4 In Equations (21) and (23), $c_s = 5\ 000$ m/s for the nominal speed of sound in the pipe wall if made of steel.

NOTE 5 It should be noted that the minimum transmission loss occurs at the first pipe coincidence frequency.

Table 6 – Frequency factors G_x (f) and G_y (f)

<i>f</i> _i < <i>f</i> ₀	$f_i \ge f_0$
$\mathbf{G}_{x}(f_{i}) = \left(\frac{\mathbf{f}_{o}}{\mathbf{f}_{r}}\right)^{2/3} \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{o}}\right)^{4}$	$G_{x}(f_{i}) = \left(\frac{f_{i}}{f_{r}}\right)^{1/2} \text{ for } f_{i} < f_{r}$ $G_{x}(f_{i}) = 1 \text{ for } f_{i} \ge f_{r}$
$\mathbf{G}_{y}(f_{i}) = \left(\frac{\mathbf{f}_{o}}{\mathbf{f}_{g}}\right) \text{ for } \mathbf{f}_{o} < \mathbf{f}_{g}$	$\mathbf{G}_{y}(f_{i}) = \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{g}}\right) \text{ for } f_{i} < f_{g}$
$G_{y}(f_{i}) = 1 \text{ for } f_{o} \ge f_{g}$	$G_y(f_i) = 1$ for $f_i \ge f_g$

5.6 External sound pressure calculation

The external sound pressure level spectrum at a distance of 1 m from the pipe wall can be calculated from the internal sound-pressure level spectrum and the transmission losses. For higher valve outlet Mach numbers the combined internal sound-pressure $L_{piS(fi)}$ at the pipe wall caused by valve trim and expander instead of $L_{pi(fi)}$ shall be used (see Equation (43) in Clause 7).

$$L_{pe,1m}(f_i) = L_{pi}(f_i) + TL(f_i) - 10 \log\left(\frac{D_i + 2t_s + 2}{D_i + 2t_s}\right)$$
(24)

Finally, the overall A-weighted sound pressure level at a distance of 1 m from the pipe wall can be calculated by:

$$L_{pAe,1m} = 10 \cdot Log_{10} \left(\sum_{i=1}^{N=33} 10^{\frac{L_{pe,1m}(f_i) + \Delta L_A(f_i)}{10}} \right)$$
(25)

where

 f_i = third octave band center frequency;

 $L_{\rm pi}(f_{\rm j})$ = internal sound pressure level at frequency $f_{\rm j}$;

 $TL(f_i)$ = transmission loss at frequency f_i ;

 $\Delta L_{A}(f_{i}) = "A"$ weighting factor at frequency f_{i} .

f _i [Hz}	12,5	16	20	25	31.5	40	50	63	80	100	125
$\Delta L_{\rm A}(f_{\rm i})$	-63,4	-56,7	-50,5	-44,7	-39,4	-34,6	-30,2	-26,2	-22,5	-19,1	-16,1
<i>f</i> _i [Hz}	160	200	250	315	400	500	630	800	1000	1250	1600
$\Delta L_{\rm A}(f_{\rm i})$	-13,4	-10,9	-8,6	-6,6	-4,8	-3,2	-1,9	-0,8	0	0,6	1,0
<i>f</i> _i [Hz}	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
$\Delta L_{\rm A}(f_{\rm i})$	1,2	1,3	1,2	1,0	0,5	-0,1	-1,1	-2,5	-4,3	-6,6	-9,3

Table 7 – "A" weighting factor at frequency f_i

NOTE Octave bands can be also used, when in Equation (19) instead of the first term of 8 dB, a value of 3 dB is used.

5.7 Calculation flow chart

The following flow chart provides a logical sequence for using the above equations to calculate the sound-pressure level.

Start with 5,1, 5,2 and 5,3 for all regimes

Then 5,4 for regime dependent calculations

Then 5,5 and 5,6 for all regimes.

NOTE See Annex A for calculation examples.

6 Valves with special trim design

6.1 General

This clause is applicable to valves with special trim design. Although it uses much of the procedure from Clause 5, it is placed in a separate clause of this standard, because these trims need special consideration.

6.2 Single stage, multiple flow passage trim

For valves with single stage, multiple flow passage trim (see Figure 1 for one example of many effective noise reducing trims) without significant pressure recovery between stages, the procedure in Clause 5 shall be used, except as noted below.

NOTE This is one example of many effective noise-reducing trims.

Figure 1 – Single stage, multiple flow passage trim

All flow passages shall have the same hydraulic diameter, and the distance between them shall be sufficient to prevent jet interaction.

Although the valve style modifier is the same as in Clause 5, an example of its application is given below:

EXAMPLE

Assume a trim with 48 exposed rectangular passages which have a width of 0,010 m and a height of 0,002 m. The area A of each passage is $0,010 \times 0,002 = 0,000 \ 02 \ m^2$. The wetted perimeter

 $l_{\rm W}$ = (2 \times 0,010) + (2 \times 0,002) = 0,024 m; $d_{\rm O}$ = 0,035 m, and $d_{\rm H}$ = 0,0033, which yields $F_{\rm d}$ = 0,0033/0,035 = 0,094.

The jet diameter D_i is calculated as follows:

$$D_{\rm j} = N_{14} \cdot F_{\rm d} \sqrt{C[0.9 - 0.06(l/d)]}$$
(26)

NOTE 1 F_{Ln} has been replaced by [0,9 - 0,06(l/d)] in the expression for D_i , and l/d has a maximum value of 4.

The result of using [0,9 - 0,06(l/d)] instead of F_{Ln} is a general increase in the transmission loss in regimes I, II and III by up to 5 dB.

The Mach number at the valve outlet is calculated using Equation (15).

NOTE 2 For pressure ratios $p_1/p_2 > 4$, Equation (8a), which is used to calculate F_d , is only applicable when the wall distance between passages exceeds 0,7 *d*. It also loses its validity if the Mach number M_o at the valve outlet exceeds 0,2.

6.3 Single flow path, multistage pressure reduction trim (two or more throttling steps)

For single flow path, multistage valves (see Figure 2 for one example of many effective noise-reducing trims) without significant pressure recovery between stages, the procedure of Clause 5 shall be used, except as noted below.

NOTE This is one example of many effective noise-reducing trims.

Figure 2 – Single flow path, multistage pressure reduction trim

NOTE 1 All calculations in 6.3 are applicable to the last stage.

The flow coefficient C_n shall be used in place of C. It is applicable to the last stage of the multistage trim. When values of C_n are not available from the valve manufacturer, the following relationship shall be used:

$$C_{\rm n} = N_{16} A_{\rm n}$$
 (27)

NOTE 2 N_{16} is a numerical constant, the value of which accounts for the specific flow coefficient (K_v or C_v) used. Values of the constants may be obtained from Table 1.

The stagnation pressure p_n at the last stage shall be used in place of p_1 , and the density ρ_n shall be used in place of ρ_1 . These values are determined using the following equations as appropriate:

NOTE 3 If $p_1/p_2 \ge 2$, then it should first assumed that $p_n/p_2 < 2$ and p_n should then be calculated from Equation (28a). If the calculated $p_n \ge 2 p_2$, then p_n should be calculated from Equation (28b) and the procedure continued.

If $p_1/p_2 \ge 2$ and $p_n/p_2 < 2$:

$$p_{\rm n} = \sqrt{\left(\frac{p_{\rm 1}\,{\rm C}}{1,155\,{\rm C}_{\rm n}}\right)^2 + {p_2}^2}$$
 (28a)

If $p_1/p_2 \ge 2$ and $p_n/p_2 \ge 2$:

$$p_{n} = p_{1} \left(\frac{C}{C_{n}} \right)$$
(28b)

BS EN 60534-8-3:2011 60534-8-3 © IEC:2010

- 25 -

If $p_1/p_2 < 2$:

$$p_{\rm n} = \sqrt{\left(\frac{C}{C_{\rm n}}\right)^2 \left(p_1^2 - p_2^2\right) + p_2^2}$$
 (28c)

$$\rho_{\rm n} = \rho_{\rm 1} \left(\frac{p_{\rm n}}{p_{\rm 1}} \right) \tag{29}$$

The jet diameter for the last stage used in the equations for the peak frequency is determined from the following equation:

$$D_{\rm j} = N_{\rm 14} \ F_{\rm d} \ \sqrt{C_{\rm n} \ F_{\rm L}} \tag{30}$$

NOTE 4 For this Equation, F_d and F_L of the last stage should be used.

Finally, the internal sound pressure level of the last stage that is radiated into the pipe has to be corrected with the following equation:

$$L_{pi} = L_{pi,n} + \frac{l}{(n-1)^{0.125}} I 0 \cdot \log_{10} \left(\frac{p_1}{p_n}\right)$$
(31)

NOTE 5 The noise contribution of the last stage is given by $L_{pi,n}$. The term 10 $\log_{10} (p_1/p_n)$ includes the sound pressure level caused by the pressure reductions of the other stages.

6.4 Multipath, multistage trim (two or more passages and two or more stages)

NOTE 1 This subclause covers only linear travel valves.

NOTE 2 All calculations in 6.4 are applicable to the last stage.

For multipath, multistage trim (see Figure 3 for one example of many effective noise-reducing trims), the procedure of Clause 5 shall be used, except as noted below.

NOTE This is one example of many effective noise-reducing trims.

Figure 3 – Multipath, multistage trim (two or more passages and two or more stages)

All flow passages shall have the same hydraulic diameter, and the distance between them shall be sufficient to prevent jet interaction. The flow area of each stage shall increase between inlet and outlet.

The vena contracta pressure p_{vc} shall be calculated using F_{Ln} instead of F_L in Equation (2). The flow coefficient C_n per Equation (27) shall be used in place of C; the stagnation pressure p_n of the last stage per Equation (28) shall be used in place of p_1 ; and the density ρ_n per Equation (29) shall be used in place of ρ_1 .

The jet Mach number is calculated from the following equation:

$$M_{jn} = \sqrt{\left(\frac{2}{\gamma - 1}\right) \left[\left(1 - \frac{x}{F_{Ln}^{2}}\right)^{(1 - \gamma)/\gamma} - 1\right]}$$
(32)

where the pressure drop ratio x for the last stage is determined from Equation (1) using p_n in place of p_1 .

The peak frequency f_p is calculated from Equation (33) using the jet diameter D_j for the last stage from Equation (30):

$$f_{\rm p} = \frac{\operatorname{St}_{\rm p} M_{\rm jn} \, c_{\rm vc}}{D_{\rm j}} \tag{33}$$

NOTE 3 If the Strouhal number St_p cannot be determined, St_p can be set to equal 0,2.

60534-8-3 © IEC:2010

NOTE 4 The method of 6.4 is not accurate if the Mach number M_o at the valve outlet exceeds 0,2. For calculation of M_o , see Equation (15). At a Mach number of 0,3, errors may exceed 5 dB. Refer to Clause 7 for the procedure for higher Mach numbers.

NOTE 5 See Annex A for a calculation example.

Finally, the A-weighted sound-pressure level L_{pAe} is calculated using Equation (25).

7 Valves with higher outlet Mach numbers

7.1 General

This clause provides a method for predicting sound pressure levels produced at the outlet of the valve with or without an expander. The applicability is limited to 30° as total angle of the transition piece installed downstream of the valve. Higher angles can lead to flow instabilities that are not within the scope of this standard.

7.2 Calculation procedure

In the downstream pipe, the velocity is limited to a Mach number of 0,8 and is calculated from the following equation:

$$U_{\rm p} = \frac{4 \,\dot{m}}{\pi \,\rho_2 \,{D_{\rm i}}^2} \tag{34}$$

The gas velocity U_R at the inlet of the expander is limited to the sonic velocity c_2 and is calculated as follows:

$$U_{\rm R} = \frac{U_{\rm p} D_{\rm i}^2}{\beta d_{\rm i}^2}$$
(35)

NOTE 1 It is recognized that the velocity profile in the valve outlet is not uniform in all cases, and a contraction coefficient may have to be employed. This coefficient β is included in Equation (35). The value of β can be derived from test data using the point of choked flow in the valve outlet as an indication of Mach 1. Net area equals mass flow divided by density and speed of sound. It can also be determined by analytical methods. A value of $\beta = 0.93$ seems to be applicable to straight pattern globe valves. Data for other valve styles are not available at this time, but for some rotary valves the value may be as low as 0,7.

The stream power in the expander is determined from Equation (36).

$$W_{\rm mR} = \frac{\dot{m} U_{\rm R}^2}{2} \left[\left(1 - \frac{d_{\rm i}^2}{D_{\rm i}^2} \right)^2 + 0.2 \right]$$
(36)

The peak frequency of the generated noise is determined as follows:

$$\mathbf{f}_{pR} = \frac{St_p \ \mathbf{U}_R}{\mathbf{d}_i} \tag{37}$$

Equation (38) is used to calculate the acoustical efficiency factor.

$$\eta_R = \left(1 \times 10^{A_\eta}\right) M_R^{3}$$
(38)

NOTE 2 For ${\rm St}_{\rm p}$ and ${\rm A}_{\rm \eta}$ s. Table 4

where

$$M_{\rm R} = \frac{U_{\rm R}}{c_2} \tag{39}$$

Then, the generated sound power is determined as follows:

$$W_{\rm aR} = \eta_{\rm R} \; W_{\rm mR} \tag{40}$$

Although not required for this method, the total sound power level is calculated using Equation (12).

To calculate the internal sound-pressure level referenced to P_{o} , the following equation is used:

$$L_{piR} = 10 \log_{10} \left[\frac{(3,2 \times 10^9) W_{aR} \rho_2 c_2}{D_i^2} \right] + L_g$$
(41)

The frequency spectrum related to the internal sound pressure levels due to the downstream pipe noise can be predicted from Equation (42) ([17]).

$$L_{piR}(f_i) = L_{piR} - 8 - 10 \cdot \log\left\{ \left[1 + \left(\frac{f_i}{2 \cdot f_{pR}} \right)^{2.5} \right] \cdot \left[1 + \left(\frac{f_{pR}}{2 \cdot f_i} \right)^{1.7} \right] \right\}$$
(42)

NOTE 3 Octave bands can be also used, when in Equation (41) instead of the first term of 8 dB, a value of 3 dB is used

The combined sound-pressure level $L_{piS}(f_i)$ from both the valve trim $L_{pi}(f_i)$ and the expander $L_{piR}(f_i)$ can be estimated from Equation (42).

$$L_{piS}(f_i) = 10 \log_{10} \left(10^{L_{pi}(f_i)/10} + 10^{L_{piR}(f_i)/10} \right)$$
(43)

 $L_{pis}(f_i)$ has then to be used instead $L_{pi}(f_i)$ in Equation (24) to calculate the external sound pressure levels in Equations (24) and (25).

8 Valves with experimentally determined acoustical efficiency factors

This standard recognizes acoustical efficiency factors based on laboratory data for specific valve designs as an alternative to the values calculated using the typical values given in Table 4. This alternative value of the acoustical efficiency factor η_{x} shall be calculated from noise measurements according to procedures in IEC 60534-8-1.

The preferred method is that L_{pi} and $L_{pi}(f_i)$ are measured versus the differential pressure ratio x directly according to IEC 60534-8-1 Method B.

An alternative is that $L_{pe,1m}$ and $L_{pe,1m}(f_i)$ are measured from external noise measurements vs. the differential pressure ratio x according to the procedures given in IEC 60534-8-1 Method A. On that basis, L_{pi} and $L_{pi}(f_i)$ have to be calculated from the measured $L_{pe,1m}(f_i)$ and the transmission loss (see 5.6). Therefore the pipe data of the test facility shall be used.

BS EN 60534-8-3:2011 60534-8-3 © IEC:2010

For both measurements the valve outlet Mach number $\rm M_{O}$ should be lower than the appropriate limits for the trim being tested.

On the basis of the experimentally determined L_{pi} and $L_{pi}(f_i)$ (direct or via $L_{pe,1m}(f_i)$), the following parameters may be determined:

- The experimentally determined acoustical efficiency factor η_x as a function of x. This would be used in place of the values calculated according to the equations in Table 3.
- A new frequency profile function $L_{pi}(f_i) L_{pi}$, from which new values of the peak Strouhal number may be determined. The new profile would be used in place of Equation (19). The new Strouhal number would be used in place of the typical values that are given in Table 4 when calculating the peak frequency f_p according to the equations in Table 3.

All other calculations should be in accordance with 5.7.

9 Combination of noise produced by a control valve with downstream installed two or more fixed area stages

When fixed area pressure reduction stages (like drilled holes plates) are installed downstream a control valve, total noise produced downstream can be calculated as follows (the example refers to a two-stage configuration):

$$L_{piTot}(f_i) = 10 \bullet \log_{10} \left(10^{0.1 \bullet (Lpi(1)(f_i) - \Delta(2)(f_i) - \Delta(3)(f_i)} + 10^{0.1 \bullet (Lpi(2)(f_i) - \Delta(3)(f_i)} + 10^{0.1 \bullet (Lpi(3)(f_i))} \right)$$
(44)

where

- L_{piTOT}(f_i) is the total noise level inside the pipe downstream the last fixed area stage. L_{piTOT}(f_i) shall be used in Equation (24) instead of Lpi(fi) to calculate L_{pe,1m}(f_i);
- L_{pi(j)}(f_i) is the internal noise level produced by the stage (j) at the frequency (f_i) into the downstream pipe without taking in account downstream installed silencer attenuation;
- $\Delta_{(j)}(f_i)$ is the noise attenuation of the stage (j) at the frequency (f_i) . $\Delta_{(j)}(f_i)$ are experimental values. If no experimental values are available $\Delta_{(i)}(f_i)$ can be set 0.

IEC 2490/10

Figure 4 – Control valve with downstream installed two fixed area stages

Annex A (informative)

Calculation examples

A.1 General

This annex indicates how the equations in this standard are used. The use of calculated values to several significant places is not meant to imply such accuracy; it is only to assist the user in checking the calculated values. The numbers on the left-hand side in parentheses are the equation numbers as used in this standard.

A.2 Calculation examples 1 to 6

Given data

Valve

Single-seat	globe valve	(with cage)	installed flow	to open
	g	(

Valve size:	Various
Valve outlet diameter:	Various
Rated C _v :	C _{vR} = 195
Required C _v :	Various
Combined liquid pressure recovery factor and piping geometry factor:	F _{LP} = 0,792
Number of cage openings:	$N_0 = 6$
Wetted perimeter of single flow passage:	<i>I</i> _W = 181 mm = 0,181 m
Area of single flow passage:	$A = 0,00137 \text{ m}^2$
Pressure drop ratio factor:	$x_{\rm T} = 0,75$

Pipe

Inlet nominal pipe size:	DN 200
Outlet nominal pipe size:	DN 200
Pipe wall thickness:	t _S = 8 mm = 0.008 m
Internal pipe diameter:	Various
Speed of sound in pipe:	c _S = 5 000 m/s
Density of pipe material:	$ ho_{\rm S}$ = 8 000 kg/m ³

Other

Speed of sound in air:	c _o = 343 m/s
Density of air:	$\rho_0 = 1,293 \text{ kg/m}^3$
Actual atmospheric pressure:	p_{a} = 1,013 25 bar = 1,013 25 × 10 ⁵ Pa

x_{CE} = 0.942

Standard atmospheric pressure:

sure: $p_{\rm s} = 1,013 \ 25 \ \text{bar} = 1,013 \ 25 \times 10^5 \ \text{Pa}$

The following values are used in, or determined from, calculations based on IEC 60534-2-1.

Head loss coefficient: $\Sigma \zeta = 0,86$ Sum of inlet velocity head coefficient: $\zeta_i = 1,2$ Piping geometry factor: $F_p = 0,98$

			-			
	Example 1	Example 2	Example 3	Example 4	Example 5	Example 6
Type fluid: vapour						
Mass flow rate	m = 2.22 kg/s	m = 2.29 kg/s	m = 2.59 kg/s	m = 1.18 kg/s	m = 1.19 kg/s	m = 0.89 kg/s
Valve inlet absolute pressure	p ₁ = 10 bar = 1.0 x 10 ⁶ Pa	p ₁ = 10 bar = 1.0 x 10 ⁶ Pa	p ₁ = 10 bar = 1.0 x 10 ⁶ Pa	p ₁ = 10 bar = 1.0 x 10 ⁶ Pa	p ₁ = 10 bar = 1.0 x 10 ⁶ Pa	p ₁ = 10 bar = 1.0 x 10 ⁶ Pa
Valve outlet absolute pressure	p ₂ = 7.2 bar = 7.2 x 10 ⁵ Pa	p ₂ = 6.9 bar = 6.9 x 10 ⁵ Pa	p ₂ = 4.8 bar = 4.8 x 10 ⁵ Pa	p ₂ = 4.2 bar = 4.2 x 10 ⁵ Pa	p ₂ = 0.5 bar = 5 x 10 ⁴ Pa	p ₂ = 0.5 bar = 5 x 10 ⁴ Pa
Inlet density	ρ ₁ = 5.3 kg/m³	ρ ₁ = 5.3 kg/m³	ρ ₁ = 5.3 kg/m ³			
Inlet absolute temperature	T ₁ = 177 °C = 450 K	T ₁ = 177 °C = 450 K	T ₁ = 177 °C = 450 K			
Specific heat ratio	γ = 1.22	γ = 1.22	γ = 1.22	γ = 1.22	γ = 1.22	γ = 1.22
Molecular mass	M = 19.8 kg/kmol	M = 19.8 kg/kmol	M = 19.8 kg/kmol	M = 19.8 kg/kmol	M = 19.8 kg/kmol	M = 19.8 kg/kmol
Required C_v	C _v = 90	C _v = 90	C _v = 90	C _v = 40	C _v = 40	C _v = 30
Valve size	DN 100	DN 100	DN 100	DN 200	DN 200	DN 100
Valve outlet diameter	D = 0.1 m	D = 0.1 m	D = 0.1 m	D = 0.2031 m	D = 0.2031 m	D = 0.1 m
Internal pipe diameter	D _i = 0.2031 m	D _i = 0.2031 m	D _i = 0.15 m			
(1) Differential pressure ratio $x = \frac{p_1 - p_2}{p_1}$	x = 0.28	x = 0.31	x = 0.52	x = 0.58	x = 0.95	x = 0.95
(2) Absolute vena contracta pressure at subsonic flow conditions $p_{vc} = p_1 \cdot \left(1 - \frac{x}{(F_{LP} / F_P)^2}\right)$	р _{vс} = 567787 Ра	p _{vc} = 521478 Pa	p _{vc} = 197319 Pa	p _{vc} = 104702 Pa	р _{vс} = -466437 Ра	p _{vc} = -466437 Pa
(3) Vena contracta differential pressure ratio at critical flow conditions $x_{vee} = 1 - \left(\frac{2}{\gamma+1}\right)^{\gamma/(\gamma-1)}$	x _{vcc} = 0.439	x _{vcc} = 0.439	x _{vcc} = 0.439			
	Example 1	Example 2	Example 3	Example 4	Example 5	Example 6
(4) Differential pressure ratio at critical flow conditions $x_C = (F_{LP} / F_P)^2 x_{vec}$	x _C = 0.285	x _C = 0.285	x _C = 0.285			
(5) Recovery correction factor $\alpha = \frac{1 - x_{vcc}}{1 - x_{C}}$	α = 0.784	α = 0.784	α = 0.784	α = 0.784	α = 0.784	α = 0.784
(6) Differential pressure ratio at break point $1 (1)^{\gamma/(\gamma-1)}$	x _B = 0.576	x _B = 0.576	x _B = 0.576			

Table A.1 – Calculation: examples 1 to 6

 $\alpha \equiv \frac{1 - x_{VC}}{1 - x_C}$ (6) Differential pressure ratio at break point $x_B = 1 - \frac{1}{\alpha} \left(\frac{1}{\gamma}\right)^{\gamma/(\gamma-1)}$ (7) Differential pressure ratio where region of constant acoustical efficiency begins $x_{CE} = 1 - \frac{1}{22\alpha}$ (a = 0.764 (a = 0.942 (

60534-8-3 © IEC:2010

- 33 -

	Example 1	Example 2	Example 3	Example 4	Example 5	Example 6
Regime definition	Example i	Example 1	Example e	Example	Example e	Example e
$\begin{array}{llllllllllllllllllllllllllllllllllll$	x ≤ x _C ⇒ Regime I	$x_C < x \le x_{VCC}$ \Rightarrow Regime II	$x_{VCC} < x \le x_B$ \Rightarrow Regime III	$\begin{array}{l} x_B < x \leq x_{CE} \\ \Rightarrow \text{Regime IV} \end{array}$	$\begin{array}{l} x_{CE} < x \\ \Rightarrow \text{Regime V} \end{array}$	$x_{CE} < x$ \Rightarrow Regime V
(8b) Hydraulic diameter of a single flow passage $d_{\rm H} = \frac{4}{l_{\rm w}} \frac{A}{l_{\rm w}}$	d _H = 0.030 m	d _H = 0.030 m	d _H = 0.030 m	d _H = 0.030 m	d _H = 0.030 m	d _H = 0.030 m
(8c) Diameter of a circular orifice $d_{o} = \sqrt{\frac{4 N_{o} A}{\pi}}$	d ₀ = 0.010 m	d ₀ = 0.010 m	d ₀ = 0.010 m	d ₀ = 0.010 m	d ₀ = 0.010 m	d ₀ = 0.010 m
(8a) Valve style modifier $F_{\rm d} = \frac{d_{\rm H}}{d_{\rm o}}$	F _d = 0.30	F _d = 0.30	F _d = 0.30	F _d = 0.30	F _d = 0.30	F _d = 0.30
(9) Jet diameter	$N_{14} = 4.6 \times 10^{-3}$	$N_{14} = 4.6 \times 10^{-3}$	$N_{14} = 4.6 \times 10^{-3}$	$N_{14} = 4.6 \times 10^{-3}$	$N_{14} = 4.6 \times 10^{-3}$	$N_{14} = 4.6 \times 10^{-3}$
$\mathbf{D}_{j} = \mathbf{N}_{14} \mathbf{F}_{d} \sqrt{\mathbf{C} \left(F_{LP} / F_{P} \right)}$	⇒ Dj = 0.012 m	⇒ Dj = 0.012 m	⇒ Dj = 0.012 m	⇒ Dj = 0.008 m	⇒ Dj = 0.008 m	⇒ Dj = 0.007 m
Calculations for Regime I						
(Table 3) Stream power of mass flow $W_m = \frac{\dot{m} (M_{vc} c_{vc})^2}{2}$	W _m = 225385 W					
(Table 3) Vena contracta absolute temperature $T_{w} = T_1 \left(1 - \frac{x}{(F_{LP} / F_P)^2} \right)^{(\gamma-1)/\gamma}$	T _{vc} = 406 K					
(Table 3) Speed of sound in the vena contracta $c_{vc} = \sqrt{\gamma \frac{p_1}{\rho_1} \left(1 - \frac{x}{(F_{LP} / F_P)^2}\right)^{(\gamma-1)/\gamma}}$	c _{vc} = 455.9 m/s					
(Table 3) Mach number at vena contracta $M_{vc} = \sqrt{\left(\frac{2}{\gamma - 1}\right) \left[\left(1 - \frac{x}{F_L^2}\right)^{(1 - \gamma)/\gamma} - 1 \right]}$	M _{vc} = 0.988					
(Table 3) Acoustical efficiency factor $\eta = \left(1 \times 10^{A_{\eta}}\right) (F_{LP} / F_{P})^{2} \cdot M_{vc}^{3}$	$\begin{array}{c} A_{\eta} = -3.8 \\ \Longrightarrow \\ \eta_1 = 9.9 \times 10^{-5} \end{array}$					
(11) Sound power $W_a = \eta W_m$	Wa = 22.3 W					
(Table 3) Peak frequency	St _p = 0.2					
$f_p = \frac{Stp \cdot M_{vc} \cdot c_{vc}}{D}$	⇒ f _p = 7778 Hz					
Calculations for Regime II						
(Table 3) Speed of sound in the vena contracta $c_{vec} = \sqrt{\frac{2\gamma}{\gamma+1} \frac{p_1}{\rho_1}}$		c _{vcc} = 455.4 m/s				
(Table 3) Stream power of mass flow $W_m = \frac{\dot{m}(c_{vcc})^2}{2}$		W _{ms} = 237447 W				
(Table 3) Freely expanded jet Mach number $ \begin{bmatrix} \sqrt{\frac{2}{\gamma-1} \left[\left(\frac{1}{\alpha (1-x)}\right)^{(\gamma-1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma-1} \left[(22)^{(\gamma-1)\gamma} - 1 \right]} \end{bmatrix} $		M _j = Min(1.03; 2.6) = 1.03				
(Table 3) Acoustical efficiency factor $\eta = \left(1 \times 10^{A_{\eta}}\right) \cdot \frac{x}{x_{\text{rec}}} M_{j}^{-6,6(F_{LP} / F_{P})^{2}}$		$A_{\eta} = -3.8$ \Rightarrow $\eta_2 = 1.3 \times 10^{-4}$				
(11) Sound power $W_a = \eta W_m$		W _a = 30.4 W				

	Example 1	Example 2	Example 3	Example 4	Example 5	Example 6
(Table 3) Peak frequency		Stp = 0.2				
$f_p = \frac{SIp \cdot M_j \cdot C_{vcc}}{D_j}$		\Rightarrow f _p = 8115 Hz				
Calculations for Regime III			1			
(Table 3) Speed of sound in the vena contracta						
$\mathbf{c}_{vee} = \sqrt{\frac{2\gamma}{\gamma+1}} \frac{\mathbf{p}_1}{\rho_1}$			c _{vcc} = 455.4 m/s			
(Table 3) Stream power of mass flow			\// =			
$W_m = \frac{\dot{m}(c_{vcc})^2}{2}$			268553 W			
(Table 3) Freely expanded jet Mach number $ \begin{bmatrix} \sqrt{\frac{2}{\gamma-1} \left[\left(\frac{1}{\alpha (1-x)} \right)^{(\gamma-1)/\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma-1} \left[(22)^{(\gamma-1)/\gamma} - 1 \right]} \end{bmatrix} $			M _j = Min(1.32; 2.6) = 1.32			
(Table 3) Acoustical efficiency factor $\eta = \left(1 \times 10^{A_{\eta}}\right) \cdot M_{j}^{6,6(F_{LP} / F_{P})^{2}}$			$A_{\eta} = -3.8$ \Rightarrow $\eta_{3} = 5.3 \times 10^{-4}$			
(11) Sound power $W_a = \eta W_m$			W _a = 141.3 W			
(Table 3) Peak frequency			St _p = 0.2			
$f_p = \frac{Stp \cdot M_j \cdot C_{vec}}{D_j}$			\Rightarrow f _p = 10407 Hz			
Calculations for Regime IV						
(Table 3) Speed of sound in the vena contracta $c_{\rm vec} = \sqrt{\frac{2\gamma}{\gamma+1}\frac{p_{\rm i}}{\rho_{\rm i}}}$				c _{vcc} = 455.4 m/s		
(Table 3) Stream power of mass flow				\A/ -		
$W_m = \frac{\dot{m}(c_{vcc})^2}{2}$				122353 W		
(Table 3) Freely expanded jet Mach number $ \begin{bmatrix} \sqrt{\frac{2}{\gamma-1} \left[\left(\frac{1}{\alpha(1-x)}\right)^{(\gamma-1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma-1} \left[(22)^{(\gamma-1)\gamma} - 1 \right]} \end{bmatrix} $				M _j = Min(1.42; 2.6) = 1.42		
(Table 3) Acoustical efficiency factor $\binom{M^2}{2} = 26675$				A _η = -3.8		
$\eta = \left(1 \times 10^{A_{\eta}}\right) \left(\frac{w_j}{2}\right) \left(\sqrt{2}\right)^{0.0(F_{LP}/F_P)^2}$				$\underset{\eta_4}{\stackrel{\Longrightarrow}{\Rightarrow}}_{1.0 \times 10^{-4}}$		
(11) Sound power $W_a = \eta W_m$				W _a = 86.1 W		
(Table 3) Peak frequency $f_p = \frac{I.4 \cdot St_p \cdot c_{vec}}{D_j \sqrt{M_j^2 - I}}$				$\begin{array}{c} St_p = 0.2 \\ \Rightarrow \\ f_p = 16368 \; \text{Hz} \end{array}$		
Calculations for Regime V				-	-	
(Table 3) Speed of sound in the vena contracta $c_{vee} = \sqrt{\frac{2\gamma}{\gamma+1}} \frac{p_1}{\rho_1}$					c _{vcc} = 455.4 m/s	c _{vcc} = 455.4 m/s
(Table 3) Stream power of mass flow $W_m = \frac{\dot{m}(c_{vec})^2}{2}$					W _{ms} = 123389 W	W _{ms} = 92283 W
(Table 3) Freely expanded jet Mach number					M _j = Min(2.7; 2.6) = 2.6	M _j = Min(2.7; 2.6) = 2.6

60534-8-3 © IEC:2010

– 35 –

	Example 1	Example 2	Example 3	Example 4	Example 5	Example 6
$M_{\gamma} = \text{Minimum of} \begin{bmatrix} \sqrt{\frac{2}{\gamma - 1} \left[\left(\frac{1}{\alpha (1 - x)} \right)^{(\gamma - 1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma - 1} \left[(22)^{(\gamma - 1)\gamma} - 1 \right]} \end{bmatrix}$						
(Table 3) Acoustical efficiency factor $\eta = \left(1 \times 10^{A_{\eta}}\right) \left(\frac{M_{j}^{2}}{2}\right) \left(\sqrt{2}\right)^{6.6(F_{LP}/F_{P})^{2}}$					$A_{\eta} = -3.8$ \Rightarrow $\eta_5 = 2.4 \times 10^{-3}$	$A_{\eta} = -3.8$ \Rightarrow $\eta_5 = 2.4 \times 10^{-3}$
(11) Sound power $W_a = \eta W_m$					W _a = 291.9 W	W _a = 218.3 W
(Table 3) Peak frequency $f_p = \frac{I.4 \cdot St_p \cdot c_{vec}}{D_j \sqrt{M_j^2 - I}}$					$St_p = 0.2$ \Rightarrow $f_p = 6864 \text{ Hz}$	$St_p = 0.2$ \Rightarrow $f_p = 7926 \text{ Hz}$
Noise calculations						
(13) Outlet density $\rho_2 = \rho_1 \left(\frac{p_2}{p_1} \right)$	ρ ₂ = 3.8 kg/m³	$\rho_2 = 3.7 \text{ kg/m}^3$	$\rho_2 = 2.5 \text{ kg/m}^3$	$\rho_2 = 2.2 \text{ kg/m}^3$	$\rho_2 = 0.3 \text{ kg/m}^3$	$\rho_2 = 0.3 \text{ kg/m}^3$
(14) Speed of sound at downstream condition $c_2 = \sqrt{\frac{\gamma R T_2}{M}}$	ons R = 8314 J/kmol x K ⇒	R = 8314 J/kmol x K ⇒	R = 8314 J/kmol x K ⇒	R = 8314 J/kmol x K ⇒	R = 8314 J/kmol x K ⇒	R = 8314 J/kmol x K ⇒
(15) Mach number at value outlet	c ₂ = 480 m/s M _o = 0.15 < 0.3	c ₂ = 480 m/s M _o = 0.17 < 0.3	c ₂ = 480 m/s M _o = 0.27 < 0.3	c ₂ = 480 m/s M _o = 0.03 < 0.3	c ₂ = 480 m/s M _o = 0.29 < 0.3	c ₂ = 480 m/s M _o = 0.89 >0.3
$M_{0} = \frac{4 \dot{m}}{\pi D^{2} \rho_{2} c_{2}}$	⇒ calculations are appropriate	⇒ calculations are appropriate	⇒ calculations are appropriate	⇒ calculations are appropriate	⇒ calculations are appropriate	⇒ calculation of eqs. (54)-(63) is necessary
(17) Mach number in downstream pipe $4 \dot{m}$	$M_2 = 0.04 < 0.3$	$M_2 = 0.04 < 0.3$	$M_2 = 0.07 < 0.3$	$M_2 = 0.03 < 0.3$	$M_2 = 0.29 < 0.3$	M ₂ = 0.4 > 0.3
$M_2 = \frac{4 m}{\pi D_1^2 \rho_2 c_2} < 0.3$	⇒ M₂ = 0.04	⇒ M₂ = 0.04	⇒ M₂ = 0.07	⇒ M₂ = 0.03	⇒ M₂ = 0.29	⇒ M₂ = 0.3
(16) Correction for Mach number $L_{g} = 16 \log_{10} \left(\frac{1}{1 - M_{2}} \right)$	L _G = 0.26 dB	L _G = 0.29 dB	L _G = 0.47 dB	L _G = 0.24 dB	L _G = 2.4 dB	L _G = 2.5 dB
(18) Overall internal sound-pressure level $L_{pi} = 10 \log_{10} \left[\frac{(3,2 \times 10^{9}) W_{a} \rho_{2} c_{2}}{D_{i}^{2}} \right] + L_{g}$	L _{pi} = 155.3 dB	L _{pi} = 156.5 dB	L _{pi} = 161.7 dB	L _{pi} = 158.8 dB	L _{pi} = 157 dB	L _{pi} = 158.4 dB
(19) Frequency dependent internal sound- pressure level (third octave bands: 12.5 Hz - 20 000 Hz) $L_{pi}(f_i) = L_{pi} - 8$ $-10 \cdot \log \left\{ \left[1 + \left(\frac{f_i}{2 \cdot f_p} \right)^{2.5} \right] \cdot \left[1 + \left(\frac{f_p}{2 \cdot f_i} \right)^{1.7} \right] \right\}$	$\left \begin{array}{c} L_{pi,1} = 105 \text{ dB} \\ L_{pi,2} = 107 \text{ dB} \\ L_{pi,3} = 108 \text{ dB} \\ L_{pi,4} = 110 \text{ dB} \\ L_{pi,5} = 112 \text{ dB} \\ L_{pi,6} = 113 \text{ dB} \\ L_{pi,6} = 113 \text{ dB} \\ L_{pi,8} = 117 \text{ dB} \\ L_{pi,8} = 117 \text{ dB} \\ L_{pi,9} = 119 \text{ dB} \\ L_{pi,10} = 120 \text{ dB} \\ L_{pi,11} = 122 \text{ dB} \\ L_{pi,11} = 122 \text{ dB} \\ L_{pi,12} = 124 \text{ dB} \\ L_{pi,13} = 125 \text{ dB} \\ L_{pi,14} = 127 \text{ dB} \\ L_{pi,16} = 129 \text{ dB} \\ L_{pi,16} = 130 \text{ dB} \\ L_{pi,17} = 132 \text{ dB} \\ L_{pi,22} = 133 \text{ dB} \\ L_{pi,22} = 140 \text{ dB} \\ L_{pi,22} = 144 \text{ dB} \\ L_{pi,22} = 144 \text{ dB} \\ L_{pi,22} = 144 \text{ dB} \\ L_{pi,22} = 143 \text{ dB} \\ L_{pi,22} = 144 \text{ dB} \\ L_{pi,22} = 145 \text{ dB} \\ L_{pi,23} = 145 \text{ dB} \\ L_{pi,30} = 145 \text{ dB} \\ L_{pi,31} = 145 \text{ dB} \\ L_{pi,32} = 144 \text{ dB} \\ L_{pi,33} = 142 \text{ dB} \\ L_{pi,33} = 142 \text{ dB} \end{array} \right.$	$\begin{array}{c} L_{pi,1} = 106 \ dB \\ L_{pi,2} = 108 \ dB \\ L_{pi,3} = 109 \ dB \\ L_{pi,5} = 113 \ dB \\ L_{pi,6} = 114 \ dB \\ L_{pi,5} = 113 \ dB \\ L_{pi,6} = 114 \ dB \\ L_{pi,8} = 118 \ dB \\ L_{pi,9} = 119 \ dB \\ L_{pi,10} = 121 \ dB \\ L_{pi,11} = 123 \ dB \\ L_{pi,12} = 124 \ dB \\ L_{pi,13} = 126 \ dB \\ L_{pi,14} = 128 \ dB \\ L_{pi,15} = 130 \ dB \\ L_{pi,16} = 131 \ dB \\ L_{pi,19} = 133 \ dB \\ L_{pi,21} = 133 \ dB \\ L_{pi,22} = 141 \ dB \\ L_{pi,22} = 141 \ dB \\ L_{pi,23} = 142 \ dB \\ L_{pi,23} = 147 \ dB \\ L_{pi,32} = 147 \ dB \\ L_{pi,33} = 144 \ dB \\ L_{pi,34} = 144 \ dB \\ L$	$\begin{array}{c} L_{pi,1} = 109 \; dB \\ L_{pi,2} = 111 \; dB \\ L_{pi,3} = 113 \; dB \\ L_{pi,5} = 116 \; dB \\ L_{pi,5} = 116 \; dB \\ L_{pi,5} = 116 \; dB \\ L_{pi,6} = 118 \; dB \\ L_{pi,7} = 119 \; dB \\ L_{pi,9} = 123 \; dB \\ L_{pi,19} = 123 \; dB \\ L_{pi,10} = 126 \; dB \\ L_{pi,11} = 126 \; dB \\ L_{pi,12} = 128 \; dB \\ L_{pi,13} = 130 \; dB \\ L_{pi,16} = 135 \; dB \\ L_{pi,16} = 135 \; dB \\ L_{pi,19} = 140 \; dB \\ L_{pi,21} = 138 \; dB \\ L_{pi,22} = 144 \; dB \\ L_{pi,22} = 150 \; dB \\ L_{pi,23} = 150 \; dB \\ L_{pi,23} = 151 \; dB \\ L_{pi,33} = 151 \; dB \\ M_0 < 0.3 \\ \end{array}$	$\begin{array}{c} L_{pi,1} = 103 \ dB \\ L_{pi,2} = 105 \ dB \\ L_{pi,3} = 106 \ dB \\ L_{pi,5} = 110 \ dB \\ L_{pi,5} = 110 \ dB \\ L_{pi,5} = 110 \ dB \\ L_{pi,6} = 111 \ dB \\ L_{pi,8} = 113 \ dB \\ L_{pi,9} = 117 \ dB \\ L_{pi,9} = 117 \ dB \\ L_{pi,10} = 118 \ dB \\ L_{pi,11} = 120 \ dB \\ L_{pi,12} = 122 \ dB \\ L_{pi,13} = 123 \ dB \\ L_{pi,14} = 125 \ dB \\ L_{pi,15} = 127 \ dB \\ L_{pi,16} = 128 \ dB \\ L_{pi,16} = 128 \ dB \\ L_{pi,16} = 128 \ dB \\ L_{pi,21} = 133 \ dB \\ L_{pi,22} = 136 \ dB \\ L_{pi,22} = 140 \ dB \\ L_{pi,22} = 144 \ dB \\ L_{pi,22} = 144 \ dB \\ L_{pi,22} = 144 \ dB \\ L_{pi,23} = 147 \ dB \\ L_{pi,23} = 149 \ dB \\ L_{pi,33} = 149 \ dB \\ L_{pi,34} = 149 \ dB \\ L_{pi,35} = 149 \ dB \\ L_$	$\begin{array}{c} L_{pi,1} = 108 \ dB \\ L_{pi,2} = 109 \ dB \\ L_{pi,3} = 111 \ dB \\ L_{pi,5} = 111 \ dB \\ L_{pi,5} = 114 \ dB \\ L_{pi,5} = 114 \ dB \\ L_{pi,6} = 116 \ dB \\ L_{pi,9} = 121 \ dB \\ L_{pi,9} = 121 \ dB \\ L_{pi,9} = 121 \ dB \\ L_{pi,10} = 123 \ dB \\ L_{pi,10} = 123 \ dB \\ L_{pi,113} = 128 \ dB \\ L_{pi,13} = 128 \ dB \\ L_{pi,14} = 130 \ dB \\ L_{pi,16} = 133 \ dB \\ L_{pi,16} = 133 \ dB \\ L_{pi,19} = 138 \ dB \\ L_{pi,20} = 139 \ dB \\ L_{pi,20} = 143 \ dB \\ L_{pi,20} = 143 \ dB \\ L_{pi,20} = 144 \ dB \\ L_{pi,20} = 144 \ dB \\ L_{pi,20} = 147 \ dB \\ L_{pi,30} = 147 \ dB \\ L_{pi,30} = 143 \ dB \\ L$	$\begin{array}{c} {\sf L} {\sf p}_{i,1} = 108 \; {\sf dB} \\ {\sf L}_{pi,2} = 110 \; {\sf dB} \\ {\sf L}_{pi,3} = 111 \; {\sf dB} \\ {\sf L}_{pi,5} = 113 \; {\sf dB} \\ {\sf L}_{pi,6} = 117 \; {\sf dB} \\ {\sf L}_{pi,6} = 117 \; {\sf dB} \\ {\sf L}_{pi,9} = 122 \; {\sf dB} \\ {\sf L}_{pi,9} = 122 \; {\sf dB} \\ {\sf L}_{pi,9} = 122 \; {\sf dB} \\ {\sf L}_{pi,10} = 123 \; {\sf dB} \\ {\sf L}_{pi,10} = 123 \; {\sf dB} \\ {\sf L}_{pi,11} = 125 \; {\sf dB} \\ {\sf L}_{pi,11} = 125 \; {\sf dB} \\ {\sf L}_{pi,11} = 123 \; {\sf dB} \\ {\sf L}_{pi,13} = 128 \; {\sf dB} \\ {\sf L}_{pi,14} = 130 \; {\sf dB} \\ {\sf L}_{pi,16} = 133 \; {\sf dB} \\ {\sf L}_{pi,16} = 133 \; {\sf dB} \\ {\sf L}_{pi,16} = 133 \; {\sf dB} \\ {\sf L}_{pi,20} = 140 \; {\sf dB} \\ {\sf L}_{pi,22} = 144 \; {\sf dB} \\ {\sf L}_{pi,23} = 148 \; {\sf dB} \\ {\sf L}_{pi,33} = 144 \; {\sf dB} \\ {\sf L}_{pi,33} = 144 \; {\sf dB} \\ {\sf L}_{pi,33} = 144 \; {\sf dB} \\ \\ {\sf M}_0 > 0.3 \end{array}$
Note	⇒ calculation of eqs. (34)-(43) is not necessary	⇒ calculation of eqs. (34)-(43) is not necessary	⇒ calculation of eqs. (34)-(43) is not necessary	⇒ calculation of eqs. (34)-(43) is not necessary	⇒ calculation of eqs. (34)-(43) is not necessary	⇒ calculation of eqs. (34)-(43) is necessary
$U_p = \frac{4 \dot{m}}{\pi \rho_2 D_i^2} \le 0.8 \cdot c_2$						U _p = 190 m/s

		Example 1	Example 2	Example 3	Example 4	Example 5	Example 6
(35)	Gas velocity in the inlet of diameter expander $U_{R} = \frac{U_{p} D_{i}^{2}}{2 c_{2}^{2}} \leq c_{2}$						$d_i = D \text{ and}$ $\beta = 0.93$ (assumed) \Rightarrow
(36)	βd_i^{z}						U _R = 460m/s
. ,	$W_{\rm mR} = \frac{\dot{m} U_{\rm R}^2}{2} \left[\left(1 - \frac{d_{\rm i}^2}{D_{\rm i}^2} \right)^2 + 0.2 \right]$						W _{mR} = 47854 W
(37)	Peak frequency in valve outlet or reduced diameter of expander $f_{\rho R} = \frac{St_{\rho} U_{R}}{d_{,}}$						f _{pR} = 920 Hz
(39)	Mach number in the entrance to expander $M_{\rm R} = \frac{U_{\rm R}}{c_2}$						M _R = 0.96
(38)	Acoustical efficiency factor for noise created by outlet flow in expander						$\eta_R = 8.8 \times 10^{-4}$
(40)	$\eta_R = (1 \times 10^{10}) M_R^{-1}$ Sound power for noise generated by the outlet flow and propagating downstream						W _{aR} = 42.0 W
(44)	$W_{aR} = \eta_R W_{mR}$						
(41)	Wall for noise created by outlet flow in expander $L_{ppR} = 10 \log_{10} \left[\frac{(3.2 \times 10^9) W_{aR} \rho_2 c_2}{2} \right] + L_{e}$						L _{piR} = 151 dB
(42)	Frequency dependent internal sound- pressure level at pipe wall for noise created by outlet flow in expander (third octave bands: 12,5 Hz – 20 000 Hz) $L_{piR}(f_i) = L_{piR} - 8$ $-10 \cdot \log \left\{ \left[1 + \left(\frac{f_i}{2 \cdot f_{pR}} \right)^{25} \right] \cdot \left[1 + \left(\frac{f_{pR}}{2 \cdot f_i} \right)^{17} \right] \right\}$						$eq:linear_line$

60534-8-3 © IEC:2010

- 37 -

		Example 1	Example 2	Example 3	Example 4	Example 5	Example 6
(43)	Combined internal sound-pressure level at pipe wall, caused by valve trim and expander (third octave bands: 12,5 Hz – 20 000 Hz) $L_{pS}(f_i) = 10 \log_{10} \left(10^{L_{pl}(f_i)/10} + 10^{L_{pll}(f_i)/10} \right)$						
(21)	$f = \frac{c_s}{c_s}$	cs = 5000 m/s ⇒					
(22)	$r = \pi D_i$	f _r = 7836 Hz	f _r = 10610 Hz				
(22)	$f_o = \frac{f_r}{4} \left(\frac{c_2}{c} \right)$	$c_a = 343 \text{ m/s}$ ⇒ $f_0 = 2742 \text{ Hz}$	$c_a = 343 \text{ m/s}$ ⇒ $f_0 = 2742 \text{ Hz}$	$c_a = 343 \text{ m/s}$ ⇒ $f_0 = 2742 \text{ Hz}$	$c_a = 343 \text{ m/s}$ ⇒ $f_0 = 2742 \text{ Hz}$	$c_a = 343 \text{ m/s}$ ⇒ $f_0 = 2742 \text{ Hz}$	$c_a = 343 \text{ m/s}$ ⇒ $f_0 = 3713 \text{ Hz}$
(23)	External coincidence frequency $f_g = \frac{\sqrt{3} (c_a)^2}{\pi t_s (c_s)}$	f _g = 1622 Hz					

60534-8-3 © IEC:2010

	Example 1	Example 2	Example 3	Example 4	Example 5	Example 6
	$2.1 \pm 2.1 \pm 10^{-10}$	$C_{1} = 2.1 \ 10^{-10}$	$C_{1} = 2.1 \ 10^{-10}$	$C_{1} = 2.1 \ 10^{-10}$	$C_{1} = 2.1 \ 10^{-10}$	C . = 6.4.10 ⁻¹¹
	$G_{x,1} = 2.1 \times 10^{-10}$ $G_{x,2} = 5.8 \times 10^{-10}$	$G_{x,1} = 2.1 \times 10^{-10}$ $G_{x,2} = 5.8 \times 10^{-10}$	$G_{x,1} = 2.1 \times 10^{-10}$ $G_{x,2} = 5.8 \times 10^{-10}$	$G_{x,1} = 2.1 \times 10^{-10}$ $G_{x,2} = 5.8 \times 10^{-10}$	$G_{x,1} = 2.1 \times 10^{-10}$ $G_{x,2} = 5.8 \times 10^{-10}$	$G_{x,1} = 0.4 \times 10$ $G_{x,2} = 1.7 \times 10^{-10}$
	$G_{x,3} = 1.4 \times 10^{-9}$	$G_{x,3} = 4.2 \times 10^{-10}$				
	$G_{x,4} = 3.4 \times 10^{-9}$	$G_{x,4} = 1.0 \times 10^{-9}$				
	$G_{x,5} = 8.6 \times 10^{-8}$ $G_{x,6} = 2.2 \times 10^{-8}$	$G_{x,5} = 8.6 \times 10^{-8}$ $G_{x,6} = 2.2 \times 10^{-8}$	$G_{x,5} = 8.6 \times 10^{-8}$ $G_{x,6} = 2.2 \times 10^{-8}$	$G_{x,5} = 8.6 \times 10^{-8}$ $G_{x,6} = 2.2 \times 10^{-8}$	$G_{x,5} = 8.6 \times 10^{-8}$ $G_{x,6} = 2.2 \times 10^{-8}$	$G_{x,5} = 2.6 \times 10^{-9}$ $G_{x,6} = 6.7 \times 10^{-9}$
	$G_{x,7} = 5.5 \times 10^{-8}$	$G_{x,7} = 1.6 \times 10^{-8}$				
	$G_{x,8} = 1.4 \times 10^{-7}$	$G_{x,8} = 4.1 \times 10^{-8}$				
(Table C) Frequency factor C	$G_{x,9} = 3.6 \times 10^{-7}$	$G_{x,9} = 1.1 \times 10^{-7}$				
(Table 6) Frequency factor G_x	$G_{x,10} = 0.0 \times 10^{-6}$ $G_{x,11} = 2.1 \times 10^{-6}$	$G_{x,10} = 0.0 \times 10^{-6}$ $G_{x,11} = 2.1 \times 10^{-6}$	$G_{x,10} = 0.0 \times 10^{-6}$ $G_{x,11} = 2.1 \times 10^{-6}$	$G_{x,10} = 0.0 \times 10^{-6}$ $G_{x,11} = 2.1 \times 10^{-6}$	$G_{x,10} = 0.0 \times 10^{-6}$ $G_{x,11} = 2.1 \times 10^{-6}$	$G_{x,10} = 2.0 \times 10^{-7}$ $G_{x,11} = 6.4 \times 10^{-7}$
(third octave bands: 12,5 Hz – 20 000 Hz)	$G_{x,12} = 5.8 \times 10^{-6}$	$G_{x,12} = 1.7 \times 10^{-6}$				
$\left(\cdot \cdot \cdot \right)^{2} \cdot \cdot$	$G_{x,13} = 1.4 \times 10^{-5}$ $G_{x,14} = 3.4 \times 10^{-5}$	$G_{x,13} = 1.4 \times 10^{-5}$ $G_{x,14} = 3.4 \times 10^{-5}$	$G_{x,13} = 1.4 \times 10^{-5}$ $G_{x,14} = 3.4 \times 10^{-5}$	$G_{x,13} = 1.4 \times 10^{-5}$ $G_{x,14} = 3.4 \times 10^{-5}$	$G_{x,13} = 1.4 \times 10^{-5}$ $G_{x,14} = 3.4 \times 10^{-5}$	$G_{x,13} = 4.2 \times 10^{-5}$ $G_{x,14} = 1.0 \times 10^{-5}$
$\left(\frac{\mathbf{f}_o}{\mathbf{f}_o}\right)^{2/3} \left(\frac{\mathbf{f}_i}{\mathbf{f}_i}\right)^4$	$G_{x,15} = 8.6 \times 10^{-5}$	$G_{x,15} = 2.6 \times 10^{-5}$				
$\begin{pmatrix} f_r \end{pmatrix} \begin{pmatrix} f_o \end{pmatrix}$ for $f_i < f_0$	$G_{x,16} = 2.2 \times 10^{-4}$	$G_{x,16} = 6.7 \times 10^{-5}$				
	$G_{x,17} = 5.5 \times 10$ $G_{x,18} = 0.0014$	$G_{x,17} = 1.6 \times 10$ $G_{x,18} = 4.1 \times 10^{-4}$				
$G_x(f_i) = \begin{cases} f_i \end{cases}^{1/2} & \text{for } f_i \ge f_0 \text{ and } f_i < f_r \end{cases}$	G _{x,19} = 0.0036	G _{x,19} = 0.0011				
$\left(\frac{1}{f}\right)$	$G_{x,20} = 0.0088$	$G_{x,20} = 0.0026$				
for $f_i \ge f_0$ and $f_i \ge f_0$	$G_{x,21} = 0.021$ $G_{x,22} = 0.058$	$G_{x,21} = 0.000$ $G_{x,22} = 0.017$				
$\int \cdots \int \int \int \cdots \int \cdots \int \int \cdots \cdots \int \cdots \int \cdots \cdots $	G _{x,23} = 0.14	G _{x,23} = 0.04				
	$G_{x,24} = 0.34$	$G_{x,24} = 0.1$				
	$G_{x,25} = 0.03$ $G_{x,26} = 0.71$	$G_{x,25} = 0.20$ $G_{x,26} = 0.61$				
	G _{x,27} = 0.8	G _{x,27} = 0.69				
	$G_{x,28} = 0.9$	$G_{x,28} = 0.77$				
	$G_{x,30} = 1$	$G_{x,29} = 1$ $G_{x,30} = 1$	$G_{x,29} = 1$ $G_{x,30} = 1$	$G_{x,29} = 1$ $G_{x,30} = 1$	$G_{x,29} = 1$ $G_{x,30} = 1$	$G_{x,30} = 0.97$
	G _{x,31} = 1					
	$G_{x,32} = 1$					
	$G_{x,33} = 1$ $G_{y,1} = 1$					
	$G_{y,2} = 1$	G _{y,2} = 1				
	$G_{y,3} = 1$					
	$G_{y,4} = 1$ $G_{y,5} = 1$	$G_{y,4} = 1$ $G_{y,5} = 1$	$G_{y,4} = 1$ $G_{v,5} = 1$	$G_{y,4} = 1$ $G_{y,5} = 1$	$G_{y,4} = 1$ $G_{v,5} = 1$	$G_{y,4} = 1$ $G_{v,5} = 1$
	G _{y,6} = 1					
	$G_{y,7} = 1$					
(Table 6) Frequency factor G _y	$G_{y,9} = 1$ $G_{y,9} = 1$	$G_{y,8} = 1$ $G_{y,9} = 1$	$G_{y,8} = 1$ $G_{y,9} = 1$	$G_{y,9} = 1$ $G_{y,9} = 1$	$G_{y,9} = 1$	$G_{y,9} = 1$
(third octave bands: 12,5 Hz – 20 000 Hz)	G _{y,10} = 1					
	$G_{y,11} = 1$ $G_{y,12} = 1$					
$\left(f_{o} \right)$	G _{y,13} = 1	G _{y,13} = 1	G _{y,13} = 1	G _{y,12} = 1	$G_{y,12} = 1$	$G_{y,12} = 1$
$\left(\frac{\mathbf{f}_{g}}{\mathbf{f}_{g}}\right)$ for $f_{i} < f_{0}$ and $f_{0} < f_{g}$	G _{y,14} = 1	$G_{y,14} = 1$				
	$G_{y,15} = 1$ $G_{y,16} = 1$					
1 for $f_i < f_0$ and $f_0 \ge f_0$	G _{y,17} = 1	$G_{y,17} = 1$				
$G(f) = \int_{-\infty}^{1} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac$	$G_{y,18} = 1$					
$G_y(f_i) = \int f_{ij} f_{ij} f_{ij} f_{ij} df_{ij} df_{ij} df_{ij}$	$G_{y,19} = 1$ $G_{v,20} = 1$	$G_{y,19} = 1$ $G_{y,20} = 1$	$G_{y,19} = 1$ $G_{y,20} = 1$	$G_{y,19} = 1$ $G_{y,20} = 1$	$G_{y,19} = 1$ $G_{v,20} = 1$	$G_{y,19} = 1$ $G_{y,20} = 1$
$\left\ \left(\frac{\mathbf{f}_i}{\mathbf{f}_i} \right) \right\ $ for $J_i \ge J_0$ and $J_i < J_g$	G _{y,21} = 1					
$\left(\mathbf{f}_{g} \right)$	$G_{y,22} = 1$					
for $f_i \ge f_0$ and $f_i \ge f_g$	$G_{y,23} = 1$ $G_{y,24} = 1$					
1	G _{y,25} = 1	G _{y,25} = 1	G _{y,25} = 1	G _{y,25} = 1	G _{y,25} = 1	G _{y,25} = 1
	$G_{y,26} = 1$ $G_{y,27} = 1$					
	G _{y,28} = 1	$G_{y,28} = 1$	G _{y,28} = 1			
	G _{y,29} = 1					
	$G_{y,30} = 1$ $G_{y,31} = 1$					
	G _{y,32} = 1	$G_{y,32} = 1$	G _{y,32} = 1			
	G _{y,33} = 1					
	η _{S,1} = 0.028					
	$\eta_{S,2} = 0.025$					
	$\eta_{S,3} = 0.022$ $\eta_{S,4} = 0.022$	$n_{S,3} = 0.022$ $n_{S,4} = 0.02$	$n_{S,3} = 0.022$ $n_{S,4} = 0.022$	$n_{S,3} = 0.022$ $n_{S,4} = 0.02$	$n_{S,3} = 0.022$ $n_{S,4} = 0.022$	$n_{S,3} = 0.022$ $n_{S,4} = 0.022$
	$\eta_{S,5} = 0.018$					
	η _{S,6} = 0.016	$\eta_{S,6} = 0.016$	η _{S,6} = 0.016			
	$\eta_{S,7} = 0.014$					
	$\eta_{5,0} = 0.013$ $\eta_{5,9} = 0.011$	η _{5,9} = 0.013	$\eta_{S,9} = 0.013$ $\eta_{S,9} = 0.011$			
	η _{S,10} = 0.01					
(20c) Frequency-dependent structural loss factor	$\eta_{S,11} = 0.0089$					
(third octave bands:	$\eta_{S,12} = 0.0079$ $\eta_{S,13} = 0.0071$					
12,5 Hz – 20 000 Hz)	η _{S,14} = 0.0063					
, , , , , , , , , , , , , , , , , , ,	η _{S,15} = 0.0056					
$\int f_{-}$	$\eta_{S,16} = 0.005$					
$\eta_s(f_i) = \sqrt{\frac{J_s}{100 f}}$	$\eta_{S,17} = 0.0045$ $\eta_{S,18} = 0.004$					
$V^{100}J_i$	η _{S,19} = 0.0035					
	η _{S,20} = 0.0032					
	$\eta_{S,21} = 0.0028$					
	$\eta_{S,22} = 0.0025$ $\eta_{S,23} = 0.0022$	$\eta_{5,22} = 0.0025$ $\eta_{5,23} = 0.0022$	$\eta_{S,22} = 0.0025$ $\eta_{S,23} = 0.0022$			
	η _{S,24} = 0.002	η _{s,24} = 0.002	η _{s,24} = 0.002	η _{5,24} = 0.002	η _{s,24} = 0.002	η _{S,24} = 0.002
	η _{S,25} = 0.0018					
	$\eta_{S,26} = 0.0016$					
	$\eta_{5,27} = 0.0014$ $\eta_{5,28} = 0.0013$					
	η _{S,29} = 0.0011	η _{5,29} = 0.0011	η _{S,29} = 0.0011			

- 38 -

60534-8-3 © IEC:2010

- 39 -

	Example 1	Example 2	Example 3	Example 4	Example 5	Example 6
	$\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$	$\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$	$\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$	$\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$	$\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 {}_{\star} 10^{-4} \\ \eta_{S,32} = 7.9 {}_{\star} 10^{-4} \\ \eta_{S,33} = 7.1 {}_{\star} 10^{-4} \end{array}$	$\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$
(20b) Damping factor for transmission loss $\Delta TL = \begin{cases} 0 & for \ D > 0.15 \\ -16660 \cdot D^3 + 6370 \cdot D^2 & for \ 0.05 \le D \le 0.15 \\ -813 \cdot D + 35.8 & for \ D < 0.05 \end{cases}$	∆TL = 1.5 dB	∆TL = 1.5 dB	∆TL = 1.5 dB	∆TL = 0 dB	∆TL = 0 dB	ΔTL = 1.5 dB
(20a) Frequency dependent transmission loss (third octave bands: 12,5 Hz – 20 000 Hz) $TL(f_i) = 10 \log_{10} \left[\frac{(8,25 \times 10^{-7}) \left(\frac{c_2}{t_3 f_i}\right)^2}{\left(\frac{G_2 (c_2 + 2 \cdot \pi \cdot t_3 \cdot f_1 \cdot p_3 \cdot \eta_1(f_1)}{415 G_y(f_1)} + 1\right)} \left(\frac{p_s}{p_s}\right) \right] - \Delta TL$	$\begin{array}{c} TL_1 = -93 \ dB \\ TL_2 = -90.9 \ dB \\ TL_3 = -89 \ dB \\ TL_4 = -87.1 \ dB \\ TL_5 = -85.2 \ dB \\ TL_6 = -83.1 \ dB \\ TL_7 = -81.2 \ dB \\ TL_8 = -79.3 \ dB \\ TL_9 = -77.3 \ dB \\ TL_1 = -73.6dB \\ TL_1 = -75.4dB \\ TL_1 = -73.6dB \\ TL_1 = -75.4dB \\ TL_1 = -75.6dB \\ TL_1 = -64.78 \\ TL_1 = -64.78 \\ TL_2 = -71.5dB \\ TL_2 = -55.9dB \\ TL_2 = -56.7dB \\ TL_2 = -53.26 \\ TL_2 = -53.26 \\ TL_2 = -52.7dB \\ TL_2 = -52.4dB \\ TL_2 = -52.4dB \\ TL_2 = -56.4dB \\ TL_3 = -60.9dB \\ TL_3 = -63.4dB \\ TL_3 = -60.9dB \\ TL_3 = -65.6dB \\ TL_3 = -65.6dB$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ - 92.9 \ dB \\ 1 \\ 2 \\ - 90.8 \ dB \\ 1 \\ 1 \\ - 88.9 \ dB \\ 1 \\ 1 \\ - 88.9 \ dB \\ 1 \\ 1 \\ - 87. \ dB \\ 1 \\ - 75. \ dB \\ 1 \\ - 77. \ dB \\ 1 \\ -$	$\begin{array}{c} 1.1 = -91.8 \ dB \\ T_{L2} = -89.7 \ dB \\ T_{L3} = -87.8 \ dB \\ T_{L4} = -85.9 \ dB \\ T_{L5} = -83.9 \ dB \\ T_{L6} = -81.9 \ dB \\ T_{L7} = -80 \ dB \\ T_{L9} = -76.1 \ dB \\ T_{L9} = -76.1 \ dB \\ T_{L1} = -72.4 \ dB \\ T_{L1} = -66.6 \ dB \\ T_{L1} = -63.3 \ dB \\ T_{L5} = -63.3 \ dB \\ T_{L6} = -63.3 \ dB \\ T_{L2} = -55.8 \ dB \\ T_{L2} = -52.2 \ dB \\ T_{L2} = -52.3 \ dB \\ T_{L2} = -53.3 \ dB \\ T_{L3} = -60.4 \ dB \\ T_{L3} = -63.3 \ dB $	$\begin{array}{c} 1 \\ 1 \\ 1 \\ - 89.8 \ dB \\ 1 \\ 1 \\ 2 \\ - 87.7 \ dB \\ 1 \\ 1 \\ 3 \\ - 88.8 \ dB \\ 1 \\ 1 \\ 4 \\ - 84 \ dB \\ 1 \\ 1 \\ 5 \\ - 82 \ dB \\ 1 \\ 1 \\ 5 \\ - 82 \ dB \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 1 \\ 5 \\ - 80 \ dB \\ 1 \\ 1 \\ 1 \\ 1 \\ - 80 \ dB \\ 1 \\ 1 \\ 1 \\ 1 \\ - 80 \ dB \\ 1 \\ 1 \\ 1 \\ 1 \\ - 80 \ dB \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ - 80 \ dB \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{l} eq:linear_linear$	$\begin{array}{c} TL_1 = -92.9 \ dB \\ TL_2 = 90.8 \ dB \\ TL_3 = -89 \ dB \\ TL_4 = -87.2 \ dB \\ TL_6 = -85.3 \ dB \\ TL_7 = -81.7 \ dB \\ TL_7 = -81.7 \ dB \\ TL_7 = -81.7 \ dB \\ TL_7 = -77.9 \ dB \\ TL_1 = -72.6 \ dB \\ TL_2 = -57.5 \ dB \\ TL_2 = -51.5 \ dB \\ TL_2 = -51.5 \ dB \\ TL_2 = -51.5 \ dB \\ TL_2 = -53.5 \ dB \\ TL_2 = -55.5 \ dB \\ TL_3 = -62.2 \ dB \\ TL_{33} = -64.6 \ dB \\ TL_{34} = -64.6 \ dB \\ TL_{35} $
(24) Frequency dependent external sound- pressure level (third octave bands: 12.5 Hz – 20000 Hz) $L_{pe,lm}(f_i) = L_{pi}(f_i) + TL(f_i)$ $-10 \log\left(\frac{D_i + 2t_s + 2}{D_i + 2t_s}\right)$	$\begin{array}{l} L_{pe,im,1}=2\ dB\\ L_{pe,im,2}=6\ dB\\ L_{pe,im,3}=9\ dB\\ L_{pe,im,4}=13\\ dB\\ L_{pe,im,6}=17\\ dB\\ L_{pe,im,6}=20\\ dB\\ L_{pe,im,6}=27\\ dB\\ L_{pe,im,9}=31\\ dB\\ L_{pe,im,1}=38dB\\ L_{pe,im,1}=38dB\\ L_{pe,im,1}=38dB\\ L_{pe,im,1}=46dB\\ L_{pe,im,1}=53dB\\ L_{pe,im,1}=67dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,2}=77dB\\ L_{pe,im,2}=77dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,2}=83dB\\ L_{pe,im,2}=83dB\\ L_{pe,im,2}=83dB\\ L_{pe,im,2}=73dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,2}=70dB\\ L_{pe,im,3}=77dB\\ L_{pe,im,3}=77dB\\ L_{pe,im,3}=77dB\\ L_{pe,im,3}=77dB\\ L_{pe,im,3}=77dB\\ L_{pe,im,3}=67dB\\ \end{array}$	$\begin{array}{l} L_{pe,1m,1} = 3 \ dB \\ L_{pe,1m,2} = 7 \ dB \\ L_{pe,1m,3} = 10 \\ dB \\ L_{pe,1m,6} = 14 \\ dB \\ L_{pe,1m,6} = 21 \\ dB \\ L_{pe,1m,7} = 25 \\ dB \\ L_{pe,1m,7} = 25 \\ dB \\ L_{pe,1m,1} = 30dB \\ L_{pe,1m,1} = 30dB \\ L_{pe,1m,1} = 30dB \\ L_{pe,1m,1} = 43dB \\ L_{pe,1m,1} = 50dB \\ L_{pe,1m,1} = 54dB \\ L_{pe,1m,1} = 54dB \\ L_{pe,1m,1} = 54dB \\ L_{pe,1m,1} = 64dB \\ L_{pe,1m,1} = 64dB \\ L_{pe,1m,2} = 71dB \\ L_{pe,1m,2} = 71dB \\ L_{pe,1m,2} = 71dB \\ L_{pe,1m,2} = 74dB \\ L_{pe,1m,2} = 84dB \\ L_{pe,1m,2} = 84dB \\ L_{pe,1m,2} = 83dB \\ L_{pe,1m,2} = 83dB \\ L_{pe,1m,2} = 80dB \\ L_{pe,1m,2} = 80dB \\ L_{pe,1m,2} = 80dB \\ L_{pe,1m,2} = 80dB \\ L_{pe,1m,2} = 72dB \\ L_{pe,1m,3} = 68dB \end{array}$	$\label{eq:constraint} \begin{array}{c} L_{pe,1m,1} = 7 \ dB \\ L_{pe,1m,2} = 11 \\ dB \\ L_{pe,1m,3} = 15 \\ dB \\ L_{pe,1m,4} = 18 \\ dB \\ L_{pe,1m,5} = 22 \\ dB \\ L_{pe,1m,6} = 26 \\ dB \\ L_{pe,1m,6} = 26 \\ dB \\ L_{pe,1m,1} = 40 \\ dB \\ L_{pe,1m,1} = 40 \\ dB \\ L_{pe,1m,11} = 40 \\ dB \\ L_{pe,1m,12} = 48 \\ dB \\ L_{pe,1m,13} = 51 \\ dB \\ L_{pe,1m,14} = 54 \\ dB \\ L_{pe,1m,14} = 54 \\ dB \\ L_{pe,1m,15} = 58 \\ dB \\ L_{pe,1m,16} = 58 \\ dB \\ L_{pe,1m,16} = 58 \\ dB \\ L_{pe,1m,16} = 58 \\ dB \\ L_{pe,1m,12} = 72 \\ dB \\ L_{pe,1m,22} = 82 \\ dB \\ L_{pe,1m,22} = 82 \\ dB \\ L_{pe,1m,22} = 82 \\ dB \\ L_{pe,1m,22} = 88 \\ dB \\ L_{pe,1m,22} = 88 \\ dB \\ L_{pe,1m,23} = 87 \\ dB \\ L_{pe,1m,32} = 88 \\ dB \\ L_{pe,1m,33} = 81 \\ dB \\ L_{pe,1m,33} = 75 \\ dB \\ L_{pe,1m,34} = 75 \\ dB \\ L_$	$\begin{array}{l} L_{pe,1m,1}=3 \ dB\\ L_{pe,1m,2}=7 \ dB\\ L_{pe,1m,3}=10 \ dB\\ L_{pe,1m,4}=14 \ dB\\ L_{pe,1m,5}=18 \ dB\\ L_{pe,1m,7}=25 \ dB\\ L_{pe,1m,7}=25 \ dB\\ L_{pe,1m,1}=39 \ dB\\ L_{pe,1m,1}=39 \ dB\\ L_{pe,1m,1}=39 \ dB\\ L_{pe,1m,1}=30 \ dB\\ L_{pe,1m,1}=50 \ dB\\ L_{pe,1m,1}=57 \ dB\\ L_{pe,1m,2}=78 \ dB\\ L_{pe,1m,2}=78 \ dB\\ L_{pe,1m,2}=78 \ dB\\ L_{pe,1m,2}=85 \ dB\\ L_{pe,1m,2}=77 \ dB\\ L_{pe,1m,3}=75 \ dB\\ L_{pe,1m,3}=100 \ dB\\ L_{pe,1m,3}=100 \ dB\\ L_{pe,1m,3}=75 \ dB\\ L_{pe,1m,3}=100 \ dB\\ L_{pe,1m,3}=100 \ dB\\ L_{pe,1m,3}=100 \ dB\\ L_{pe,1m,3}=75 \ dB\\ L_{pe,1m,3}=100 \ dB\\ L_{pe,1m,3$	$\begin{array}{l} L_{pe,1m,1}=11\ dB\\ L_{pe,1m,2}=15\ dB\\ L_{pe,1m,3}=19\ dB\\ L_{pe,1m,4}=22\ dB\\ L_{pe,1m,5}=26\ dB\\ L_{pe,1m,5}=26\ dB\\ L_{pe,1m,5}=33\ dB\\ L_{pe,1m,5}=36\ dB\\ L_{pe,1m,1}=33\ dB\\ L_{pe,1m,1}=57\ dB\\ L_{pe,1m,1}=57\ dB\\ L_{pe,1m,1}=57\ dB\\ L_{pe,1m,1}=64\ dB\\ L_{pe,1m,1}=64\ dB\\ L_{pe,1m,1}=71\ dB\\ L_{pe,1m,1}=71\ dB\\ L_{pe,1m,1}=71\ dB\\ L_{pe,1m,2}=83\ dB\\ L_{pe,1m,2}=80\ dB\\ L_{pe,1m,2}=80\ dB\\ L_{pe,1m,2}=80\ dB\\ L_{pe,1m,2}=80\ dB\\ L_{pe,1m,2}=80\ dB\\ L_{pe,1m,2}=87\ dB\\ L_{pe,1m,3}=70\ dB\\ L_{pe,1m,3}=10\ dB\\ L_{pe,1m,3}=10\ dB\\ L_{pe,1m,3}=10\ dB\\ L_{pe,1m,3}=70\ dB\\ L_{pe,1m,3}=10\ dB\\ L_{pe,1m,3}=70\ dB\\ L_{pe,1m,3}=10\ dB\\ L_{pe,1m,3}=10\ dB\\ L_{pe,1m,3}=10\ dB\\ L_{pe,1m,3}=10\ dB\\ L_{pe,1m,3}=70\ dB\\ L_{pe,1m,3}=10\ dB\\ L_$	$\begin{array}{l} Use \ L_{pis}(f_i) \\ instead \ of \\ L_{pi}(f_i) \\ \\ L_{pe}, Im, 1 = 13 \ dB \\ L_{pe}, Im, 2 = 17 \ dB \\ L_{pe}, Im, 2 = 17 \ dB \\ L_{pe}, Im, 2 = 17 \ dB \\ L_{pe}, Im, 3 = 20 \ dB \\ L_{pe}, Im, 5 = 27 \ dB \\ L_{pe}, Im, 6 = 31 \ dB \\ L_{pe}, Im, 7 = 35 \ dB \\ L_{pe}, Im, 8 = 38 \ dB \\ L_{pe}, Im, 1 = 48 \ dB \\ L_{pe}, Im, 1 = 48 \ dB \\ L_{pe}, Im, 1 = 48 \ dB \\ L_{pe}, Im, 1 = 55 \ dB \\ L_{pe}, Im, 1 = 55 \ dB \\ L_{pe}, Im, 1 = 65 \ dB \\ L_{pe}, Im, 1 = 65 \ dB \\ L_{pe}, Im, 1 = 66 \ dB \\ L_{pe}, Im, 1 = 76 \ dB \\ L_{pe}, Im, 1 = 76 \ dB \\ L_{pe}, Im, 2 = 78 \ dB \\ L_{pe}, Im, 2 = 78 \ dB \\ L_{pe}, Im, 2 = 78 \ dB \\ L_{pe}, Im, 2 = 85 \ dB \\ L_{pe}, Im, 2 = 82 \ dB \\ L_{pe}, Im, 3 = 70 \ dB \\ L_{pe}, Im, 3 = 77 \ dB \\ L_{pe}, Im,$
(25) A-weighted sound-pressure level 1 m from pipe wall $L_{pAe,1m} = 10 \cdot Log_{10} \left(\sum_{i=1}^{N=33} 10^{\frac{L_{pe,1m}(f_i) + \Delta L_A(f_i)}{10}} \right)$	$\Delta L_{A}(f_{i}) \text{ see 5.6}$ $\Rightarrow L_{pAe,1m} = 92$ $dB(A)$	$\Delta L_{A}(f_{i}) \text{ see 5.6}$ \Rightarrow $L_{pAe,1m} = 93$ $dB(A)$	$\Delta L_{A}(f_{i}) \text{ see 5.6}$ \Rightarrow $L_{pAe,1m} = 98$ $dB(A)$	$\Delta L_{A}(f_{i}) \text{ see 5.6}$ \Rightarrow $L_{pAe, 1m} = 94$ $dB(A)$	$\Delta L_{A}(f_{i}) \text{ see 5.6}$ \Rightarrow $L_{pAe,1m} = 97$ $dB(A)$	$\Delta L_{A}(f_{i}) \text{ see 5.6}$ $\Rightarrow L_{pAe, 1m} = 94$ $dB(A)$

A.3 Calculation example 7

Given data

Valve

Single-seat globe valve (with cage) installed flow to open					
Valve size:	DN 200				
Valve outlet diameter:	D = 0,200 m				
Required C _v :	$C_{\rm v} = 81,5$				
Number of independent and identical flow passages:	$N_0 = 432$				
Total flow area of last stage:	$A_{\rm n}$ = 6,44 × 10 ⁻³ m ²				
Hydraulic diameter:	<i>d</i> _H = 0,0025 m				
Liquid pressure recovery factor for last stage:	F _{Ln} = 0,98				

Pipe

Inlet nominal pipe size:	DN 200
Outlet nominal pipe size:	DN 200
Pipe wall thickness:	t _S = 0,008 m
Internal pipe diameter:	<i>D</i> _i = 0,200 m
Speed of sound in pipe:	c _S = 5 000 m/s
Density of pipe material:	ρ _S = 8 000 kg/m³

Other

Speed of sound in air:	c _o = 343 m/s
Density of air:	ρ _o = 1,293 kg/m ³
Actual atmospheric pressure:	$p_{\rm a}$ = 1,013 25 bar = 1,013 25 × 10 ⁵ Pa
Standard atmospheric pressure:	$p_{\rm s}$ = 1,013 25 bar = 1,013 25 × 10 ⁵ Pa

Definitions

Index	1	2	3	4	5	6	7	8	9	10	11
Frequency [Hz]	12.5	16	20	25	31.5	40	50	63	80	100	125
Index	12	13	14	15	16	17	18	19	20	21	22
Frequency [Hz]	160	200	250	315	400	500	630	800	1000	1250	1600
Index	23	24	25	26	27	28	29	30	31	32	33
Frequency [Hz]	2000	2500	3150	4000	5000	6300	8000	1000 0	1250 0	1600 0	2000 0

Table A.2 – Calculation: example 7

	Example 7
Type fluid: vapour	
Mass flow rate	
Valve inlet absolute pressure	p ₁ = 70 bar = 7.0 x 10 ⁶ Pa
Valve outlet absolute pressure	p ₂ = 14 bar = 1.4 x 10 ⁶ Pa
Inlet density	ρ ₁ = 55.3 kg/m³
Inlet absolute temperature	T ₁ = 290 K
Specific heat ratio	γ = 1.31
Molecular mass	M = 19.0 kg/kmol
(27) Flow coefficient for last stage of multistage trim $C_n = N_{16} A_n$	C _n = 315
Determination of absolute stagnation pressure at last stage of multistage valve	$p_1/p_2 = 5 > 2$ \Rightarrow $p_n/p_2 < 2$ \Rightarrow Coloutation of or (200) is responsed
(28a) Absolute stagnation pressure at last stage of multistage valve	$p_n = 2.1 \times 10^6 \text{ Pa}$ \Rightarrow $p_n = 2.1 \times 10^5 \text{ Pa}$
$p_{\rm n} = \sqrt{\left(\frac{p_{\rm 1}C}{1.155C_{\rm n}}\right)^2 + p_2^2}$	The use of Equation (28a) is appropriate
(1) Differential pressure ratio $x = \frac{p_1 - p_2}{p_1}$	$\Rightarrow x = 0.334$
(2) Absolute vena contracta pressure at subsonic flow conditions $n = p \cdot \left(1 - \frac{x}{x}\right)$	p _{vc} = 1371038 Pa
(3) Vena contracta differential pressure ratio at critical flow conditions $x_{wc} = 1 - \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)}$	x _{vcc} = 0.456
(4) Differential pressure ratio at critical flow conditions $x_{C} = F_{L_{n}}^{2} x_{vyc}$	x _c = 0.438
(5) Recovery correction factor $\alpha = \frac{1 - x_{vec}}{1 - x_C}$	α = 0.968
(6) Differential pressure ratio at break point $x_{B} = 1 - \frac{1}{\alpha} \left(\frac{1}{\gamma}\right)^{\gamma/(\gamma-1)}$	x _B = 0.67
(7) Differential pressure ratio where region of constant acoustical efficiency begins $x_{CE} = 1 - \frac{1}{22 \alpha}$	x _{CE} = 0.953
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	$\begin{array}{l} x \leq x_C \\ \Rightarrow \text{Regime I} \end{array}$
Area of a single flow passage $A = \frac{A_n}{N_o}$	A = 1.5 x 10 ⁻⁵ m ²

	Example 7
(8c) Diameter of a circular orifice $d_{o} = \sqrt{\frac{4 N_{o}}{\pi}}$	d _o = 0.091 m
(8a) Valve style modifier $F_{\rm d} = \frac{d_{\rm H}}{d_{\rm o}}$	F _d = 0.028
(9) Jet diameter $D_j = N_{14} F_d \sqrt{C_n F_{Ln}}$	$N_{14} = 4.6 \times 10^{-3}$ \Rightarrow $D_{1} = 0.0022 \text{ m}$
Calculations for Regime I]
(Table 3) Stream power of mass flow $W_m = \frac{\dot{m}(M_{vc}c_{vc})^2}{2}$	W _m = 1.19 × 10 ⁶ W
(Table 3) Vena contracta absolute temperature $T_{vc} = T_1 \left(1 - \frac{x}{F_{Ln}^2} \right)^{(\gamma - 1)/\gamma}$	T _{vc} = 262 K
(Table 3) Speed of sound in the vena contracta $c_{vv} = \sqrt{\gamma \frac{p_1}{\rho_1} \left(1 - \frac{x}{F_{Ln}^2}\right)^{(\gamma-1)/\gamma}}$	Use $p_1 = p_n$ and $\rho_1 = \rho_n$ \Rightarrow $c_{vc} = 387.1m/s$
(Table 3) Mach number at vena contracta $M_{vc} = \sqrt{\left(\frac{2}{\gamma - 1}\right) \left[\left(1 - \frac{x}{F_L^2}\right)^{(1 - \gamma)/\gamma} - 1 \right]}$	M _{vc} = 0.829
(Table 3) Acoustical efficiency factor $\eta_1 = (1 \times 10^{A_\eta}) F_{Ln}^2 \cdot M_{vc}^3$	$\begin{array}{c} A_{\eta} = -4.8 \\ \Longrightarrow \\ \eta_1 = 8.7 \times 10^{-6} \end{array}$
(11) Sound power $W_a = \eta_1 W_m$	W _a = 10.3 W
(Table 3) Peak frequency $f_p = \frac{Stp \cdot M_{vc} \cdot c_{vc}}{D_j}$	$St_p = 0.1$ \Rightarrow $f_p = 14381 \text{ Hz}$
Noise calculations	
(13) Outlet density $\rho_2 = \rho_1 \left(\frac{\rho_2}{\rho_1} \right)$	ρ ₂ = 11.1 kg/m³
(14) Speed of sound at downstream conditions $\sqrt{RT_{e}}$	R = 8314 J/kmol x K
$c_2 = \sqrt{\frac{\gamma N r_2}{M}}$	⇒ c₂ = 408 m/s
(15) Mach number at valve outlet $M_0 = \frac{4 \dot{m}}{2 D^2 c_0 c_0}$	$M_0 = 0.16 < 0.3$ \Rightarrow
(17) Mach number in downstream pipe $M_2 = \frac{4 \dot{m}}{2 D^2 + 2} < 0.3$	$M_2 = 0.16 < 0.3$ $\Rightarrow 0.16$
(16) Correction for Mach number $L_{g} = 16 \log_{10} \left(\frac{1}{1 - M_{2}}\right)$	$L_{\rm G} = 1.2 \rm dB$
(18) Overall internal sound-pressure level $L_{pi} = 10 \log_{10} \left[\frac{(3.2 \times 10^{9}) W_{a} \rho_{2} c_{2}}{D_{i}^{2}} \right] + L_{g}$	L _{pi} = 156.9 dB
 (19) Frequency dependent internal sound-pressure level (third octave bands: 12.5 Hz – 20000 Hz) 	$\begin{array}{c} L_{pl,1} = 102 \ dB \\ L_{pl,2} = 104 \ dB \\ L_{pl,3} = 105 \ dB \\ L_{pl,4} = 107 \ dB \\ L_{pl,5} = 109 \ dB \\ L_{pl,5} = 109 \ dB \\ L_{pl,6} = 111 \ dB \end{array}$
$L_{pi}(f_i) = L_{pi} - 8$ $-10 \cdot \log \left\{ \left[1 + \left(\frac{f_i}{2 \cdot f_p} \right)^{2.5} \right] \cdot \left[1 + \left(\frac{f_p}{2 \cdot f_i} \right)^{1.7} \right] \right\}$	$\begin{array}{c} L_{pi,6} = 111 \ \text{dB} \\ L_{pi,7} = 112 \ \text{dB} \\ L_{pi,8} = 114 \ \text{dB} \\ L_{pi,9} = 116 \ \text{dB} \\ L_{pi,10} = 117 \ \text{dB} \\ L_{pi,11} = 119 \ \text{dB} \\ L_{pi,12} = 121 \ \text{dB} \end{array}$

	Example 7
	L _{pi,14} = 124 dB L _{pi,15} = 126 dB L _{pi,16} = 128 dB L _{pi,17} = 129 dB
	$\begin{array}{l} L_{pl,18} = 131 \ dB \\ L_{pl,19} = 133 \ dB \\ L_{pl,20} = 134 \ dB \\ L_{pl,20} = 136 \ dB \end{array}$
	$L_{p1,22} = 138 \text{ dB}$ $L_{p1,23} = 139 \text{ dB}$ $L_{p1,24} = 140 \text{ dB}$ $L_{p1,24} = 142 \text{ dB}$
	$L_{p1,26} = 143 \text{ dB} \\ L_{p1,27} = 144 \text{ dB} \\ L_{p1,27} = 144 \text{ dB} \\ L_{p1,28} = 145 \text{ dB}$
	$L_{p129} = 146 \text{ dB}$ $L_{p130} = 147 \text{ dB}$ $L_{p131} = 147 \text{ dB}$ $L_{p132} = 147 \text{ dB}$
Note	$\begin{array}{c} L_{pi33} = 147 \text{ OB} \\ M_0 < 0.3 \\ \Rightarrow \\ Coloridation of and (754) (62) is not proceeded: \end{array}$
(21) Ring frequency	$c_{\rm S}$ = 5000 m/s
$f_r = \frac{c_s}{\pi D_i}$	⇒ f _r = 7958 Hz
(22) Internal coincidence pipe frequency $f_r(c_2)$	c _a = 343 m/s
$I_o = \frac{1}{4} \left(\frac{1}{c_a} \right)$	f ₀ = 2365 Hz
(23) External coincidence frequency $f_g = \frac{\sqrt{3} (c_a)^2}{\pi t_s(c_s)}$	f _g = 1622 Hz
(Table 6) Frequency factor G_x (third octave bands: 12,5 Hz – 20 000 Hz) $G_x(f_i) = \begin{cases} \left(\frac{f_o}{f_r}\right)^{2/3} \left(\frac{f_i}{f_o}\right)^4 & \text{for } f_i < f_0 \\ \left(\frac{f_i}{f_r}\right)^{1/2} & \text{for } f_i \ge f_0 \text{ and } f_i < f_r \\ & \text{for } f_i \ge f_0 \text{ and } f_i \ge f_r \\ 1 \end{cases}$ (Table 6) Frequency factor G_y	$ \begin{array}{c} G_{x,1} = 3.5 \times 10^{-10} \\ G_{x,2} = 9.3 \times 10^{-10} \\ G_{x,3} = 2.3 \times 10^{-9} \\ G_{x,4} = 5.6 \times 10^{-9} \\ G_{x,5} = 1.4 \times 10^{-9} \\ G_{x,6} = 3.6 \times 10^{-8} \\ G_{x,7} = 8.9 \times 10^{-8} \\ G_{x,7} = 8.9 \times 10^{-7} \\ G_{x,9} = 5.8 \times 10^{-7} \\ G_{x,10} = 1.4 \times 10^{-7} \\ G_{x,11} = 3.5 \times 10^{-6} \\ G_{x,12} = 9.3 \times 10^{-6} \\ G_{x,13} = 2.3 \times 10^{-5} \\ G_{x,14} = 5.6 \times 10^{-5} \\ G_{x,15} = 1.4 \times 10^{-4} \\ G_{x,16} = 3.6 \times 10^{-4} \\ G_{x,17} = 8.9 \times 10^{-4} \\ G_{x,19} = 0.0022 \\ G_{x,19} = 0.0058 \\ G_{x,22} = 0.093 \\ G_{x,22} = 0.093 \\ G_{x,22} = 0.093 \\ G_{x,23} = 0.23 \\ G_{x,24} = 0.56 \\ G_{x,26} = 0.71 \\ G_{x,27} = 0.79 \\ G_{x,28} = 0.89 \\ G_{x,29} = 1 \\ G_{x,31} = 1 \\ G_{x,31} = 1 \\ G_{x,33} = 1 \\ G_{x,1} = 1 \\ \end{array} $
(third octave bands: 12,5 Hz – 20 000 Hz) $\left[\left(\frac{f_o}{t} \right) for \ f_i < f_o \ and \ f_o < f_i \right]$	$G_{y,2} = 1$ $G_{y,3} = 1$ $G_{y,4} = 1$ $G_{y,5} = 1$ $G_{x,6} = 1$
$\begin{bmatrix} 1_g \\ 1 \end{bmatrix} \text{for } f_i < f_0 \text{ and } f_0 \ge f_s$	$G_{y,7} = 1$ $G_{y,8} = 1$ $G_{x,8} = 1$
$\mathbf{G}_{y}(f_{i}) = \begin{cases} 1 & \text{ for } f_{i} \geq f_{0} \text{ and } f_{i} \leq f_{g} \\ \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{g}}\right) & \text{for } f_{i} \geq f_{0} \text{ and } f_{i} < f_{g} \end{cases}$	$G_{y,9} = 1$ $G_{y,10} = 1$ $G_{y,11} = 1$ $G_{y,12} = 1$ $G_{y,13} = 1$
$\begin{bmatrix} f_{g} & f_{g} \\ f_{g} & f_{g} \end{bmatrix} for f_{i} \ge f_{g} and f_{i} \ge f_{g}$	$G_{y,14}^{-y,15} = 1$ $G_{y,15}^{-y,16} = 1$ $G_{y,16}^{-y,16} = 1$

	Example 7
	$\begin{tabular}{ c c c c } \hline Example 7 \\ \hline G_{y,17} = 1 \\ G_{y,18} = 1 \\ G_{y,19} = 1 \\ G_{y,20} = 1 \\ G_{y,22} = 1 \\ G_{y,23} = 1 \\ G_{y,23} = 1 \\ G_{y,25} = 1 \\ G_{y,26} = 1 \\ G_{y,26} = 1 \\ G_{y,27} = 1 \\ G_{y,28} = 1 \\ G_{y,29} = 1 \\ G_{y,30} = 1 \\ G_{y,31} = 1 \\ G_{y,33} = 1 \\ G_{y,33} = 1 \\ G_{y,33} = 1 \\ G_{y,33} = 1 \\ \hline 0,33 = 0.022 \\ \eta_{5,4} = 0.025 \\ \eta_{5,3} = 0.018 \\ \eta_{5,6} = 0.018 \\ \eta_{5,6} = 0.018 \\ \eta_{5,7} = 0.013 \\ \eta_{5,9} = 0.011 \\ \eta_{5,10} = 0.01 \\ \eta_{5,11} = 0.0089 \\ \hline \end{tabular}$
(20c) Frequency-dependent structural loss factor (third octave bands: 12,5 Hz– 20 000 Hz) $\eta_s(f_i) = \sqrt{\frac{f_s}{100f_i}}$	$\begin{array}{c} \eta_{S,12} = 0.0079 \\ \eta_{S,13} = 0.0071 \\ \eta_{S,14} = 0.0063 \\ \eta_{S,16} = 0.005 \\ \eta_{S,16} = 0.005 \\ \eta_{S,17} = 0.0045 \\ \eta_{S,19} = 0.0035 \\ \eta_{S,20} = 0.0032 \\ \eta_{S,22} = 0.0022 \\ \eta_{S,22} = 0.0022 \\ \eta_{S,24} = 0.002 \\ \eta_{S,26} = 0.0018 \\ \eta_{S,26} = 0.0018 \\ \eta_{S,27} = 0.0014 \\ \eta_{S,28} = 0.0013 \\ \eta_{S,29} = 0.0011 \\ \eta_{S,31} = 8.9 \times 10^4 \\ \eta_{S,33} = 7.1 \times 10^4 \end{array}$
(20b) Damping factor for transmission loss	
$\Delta TL = \begin{cases} 0 & \text{for } D > 0.15 \\ -16660 \cdot D^3 + 6370 \cdot D^2 \\ -813 \cdot D + 35.8 & \text{for } 0.05 \le D \le 0.15 \end{cases}$	$\Delta TL = 0 dB$
9 for $D < 0.05$	
(20a) Frequency dependent transmission loss (third octave bands: 12,5 Hz – 20 000 Hz) $TL(f_i) = 10 \log_{10} \left[\frac{(8,25 \times 10^{-7}) \left(\frac{c_2}{t_3 f_i}\right)^2}{\left(\frac{G_s(f_i)}{(p_2 c_2 + 2 \cdot \pi \cdot t_3 \cdot f_i \cdot p_s \cdot \eta_s(f_i)} + 1\right)} \left(\frac{p_s}{p_s}\right) \right] - \Delta TL$	$\begin{array}{c} TL_1 = -94.1 \ dB \\ TL_2 = -92 \ dB \\ TL_3 = -90 \ dB \\ TL_4 = -88.1 \ dB \\ TL_6 = -84.1 \ dB \\ TL_6 = -84.1 \ dB \\ TL_7 = -82.2 \ dB \\ TL_8 = -80.2 \ dB \\ TL_9 = -78.1 \ dB \\ TL_{10} = -76.2 \ dB \\ TL_{11} = -76.2 \ dB \\ TL_{12} = -72.2 \ dB \\ TL_{13} = -70.4 \ dB \\ TL_{14} = -68.5 \ dB \\ TL_{16} = -64.5 \ dB \\ TL_{16} = -64.5 \ dB \\ TL_{18} = -60.7 \ dB \\ TL_{19} = -58.7 \ dB \\ TL_{29} = -56.9 \ dB \\ TL_{29} = -51.2 \ dB \\ TL_{22} = -53.1 \ dB \\ TL_{22} = -53.2 \ dB \\ TL_{23} = -51.2 \ dB \\ TL_{23} = -51.2 \ dB \\ TL_{24} = -49.4 \ dB \end{array}$

	Example 7
	$TL_{25} = -51.1 \text{ dB}$ $TL_{26} = -52.8 \text{ dB}$ $TL_{27} = -54.4 \text{ dB}$ $TL_{28} = -56.1 \text{ dB}$ $TL_{29} = -57.9 \text{ dB}$ $TL_{30} = -60 \text{ dB}$ $TL_{31} = -62.2 \text{ dB}$ $TL_{32} = -64.6 \text{ dB}$ $TL_{32} = -64.8 \text{ dB}$
(24) Frequency dependent external sound-pressure level (third octave bands: 12,5 Hz – 20 000 Hz) $L_{pe,lm}(f_i) = L_{pi}(f_i) + TL(f_i)$ $-10 \log\left(\frac{D_i + 2t_s + 2}{D_i + 2t_s}\right)$	$L_{33} = -00.3 \text{ dB}$ $L_{pe,1m,1} = -2 \text{ dB}$ $L_{pe,1m,3} = 5 \text{ dB}$ $L_{pe,1m,3} = 5 \text{ dB}$ $L_{pe,1m,3} = 5 \text{ dB}$ $L_{pe,1m,4} = 9 \text{ dB}$ $L_{pe,1m,5} = 13 \text{ dB}$ $L_{pe,1m,6} = 16 \text{ dB}$ $L_{pe,1m,7} = 20 \text{ dB}$ $L_{pe,1m,7} = 27 \text{ dB}$ $L_{pe,1m,10} = 31 \text{ dB}$ $L_{pe,1m,11} = 35 \text{ dB}$ $L_{pe,1m,12} = 38 \text{ dB}$ $L_{pe,1m,13} = 42 \text{ dB}$ $L_{pe,1m,14} = 46 \text{ dB}$ $L_{pe,1m,15} = 49 \text{ dB}$ $L_{pe,1m,16} = 53 \text{ dB}$ $L_{pe,1m,18} = 60 \text{ dB}$ $L_{pe,1m,19} = 64 \text{ dB}$ $L_{pe,1m,21} = 71 \text{ dB}$ $L_{pe,1m,22} = 74 \text{ dB}$ $L_{pe,1m,23} = 78 \text{ dB}$ $L_{pe,1m,22} = 74 \text{ dB}$ $L_{pe,1m,22} = 78 \text{ dB}$ $L_{pe,1m,26} = 80 \text{ dB}$ $L_{pe,1m,26} = 79 \text{ dB}$ $L_{pe,1m,27} = 70 \text{ dB}$ $L_{pe,1m,27} = 70 \text{ dB}$ $L_{pe,1m,27} = 72 \text{ dB}$ $L_{pe,1m,28} = 70 \text{ dB}$ $L_{pe,1m,28} = 70 \text{ dB}$ $L_{pe,1m,28} = 72 \text{ dB}$ $L_{pE,1m,38} = 72 \text{ dB}$ $L_{PE,1m$
(25) A-weighted sound-pressure level 1 m from pipe wall	$\Delta L_{A}(f_{i})$ see 5.6.3
$L_{pAe,1m} = 10 \cdot Log_{10} \left(\sum_{i=1}^{N-33} 10^{\frac{L_{pe,1m} \cup I_i + \dots \cup A_i \cup I_i}{10}} \right)$	⇒ L _{pAe,1m} = 89 dB(A)

Bibliography

- [1] IEC 60534-2-1, Industrial-process control valves Part 2-1: Flow capacity Sizing equations for fluid flow under installed conditions
- [2] IEC 60534-8-1, Industrial-process control valves Part 8: Noise considerations Section One: Laboratory measurement of noise generated by aerodynamic flow through control valves
- [3] ANSI/ISA-75.01.01 (IEC 60534-2-1 Mod)-2007, Flow Equations for Sizing Control Valves
- [4] BAUMANN, H. D., A Method for Predicting Aerodynamic Valve Noise Based on Modified Free Jet Noise Theories, ASME Paper 87-WA/NCA-7 28, December 1987.
- [5] BAUMANN, H. D., Coefficients and Factors Relating to Aerodynamic Sound Level Generated by Throttling Valves, Noise Control Engineering Journal, Vol. 22, No. 1, January 1984, p. 6-11.
- [6] BAUMANN, H. D., On the Prediction of Aerodynamically Created Sound Pressure Level of Control Valves, ASME Paper WM/FE 28, December 1970, p. 2.
- [7] BAUMANN, H. D., Determination of Peak Internal Sound Frequency Generated by Throttling Valves for the Calculation of Pipe Transmission Losses, Noise Control Engineering Journal, Vol. 36, No. 2, March-April 1991, p. 75-82.
- [8] BAUMANN, H. D., Predicting Control Valve Noise at High Exit Velocities, INTECH, February 1997, p. 56-59.
- [9] BERANEK, Leo L., and ISTVAN L. Vér, Noise and Vibration Control Engineering Principles and Applications, New York, 1992.
- [10] EILERS, D. and CATRON F., Effect of structural loss factor on the calculation of pipe wall transmission loss, NOISE-CON 2007, October 2007
- [11] FAGERLUND, A. C. and CHOU D. C., Sound Transmission Through a Cylindrical Pipe Wall, ASME Journal of Engineering for Industry, Vol. 103, November 1981, p. 355-360.
- [12] FOWCS Williams, J. E. and HAWKINS D. L., Sound Generation by Turbulence and Surface in Arbitrary Motion, Philosophic Transactions of the Royal Society of London, Ser. A., 264 (London, 1969), p. 321-342.
- [13] KIESBAUER, J. and VNUCEC, D., Improvement of IEC 60534-8-3 standard for noise prediction in control valves, Hydrocarbon Processing, January 2008[12] LIGHTHILL, M. J., On Sound Generated Aerodynamically: I. General Theory, Proceedings of the Royal Society of London, A211 (London, 1952), p. 564-587.
- [14] LIGHTHILL, M.J., Jet Noise, AIAA Journal, 1, 150701517, July 1963.
- [15] POWELL, A., On the Mechanism of Choked Jet Noise, Proceedings Physical Society of London, Section B., 66:1039-57 (1953).
- [16] REETHOF, G. and WARD W. C., A Theoretically Based Valve Noise Prediction Method for Compressible Fluids, Journal of Vibrations, Acoustics, Stress, and Reliability in Design, ASME, July 1986, 00329.
- [17] SHEA, Allen K., A Comparative Study of Sound Level Prediction Methods for Control Valves, Master of Engineering Report, The Pennsylvania State University, Behrend Campus, Erie, PA., August 1982.

60534-8-3 © IEC:2010

- [18] SINAMBARI, G. R., Ausströmgeräusche von Düsen und Ringdüsen in angeschlossenen Rohrleitungen Ihre Entstehung Fortpflanzung und Abstrahlung, Dissertation D386, Kaiserslautern, 1981
- [19] WARD, W. C., and REETHOF G., Graphical Implementation of a Fundamentals Based Method of Aerodynamic Control Valve Noise, American Society of Mechanical Engineers Conference on Pressure Vessels and Piping, Proceedings, Vol. 2, June 24-26, 1985.

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com

Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com

Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

...making excellence a habit."

