По аналогии с формулой (14) для напорного течения, примем для самотечных труб и каналов

$$Re_{\kappa B} = \frac{500 \cdot 4R}{K_{3}},\tag{15}$$

Введем также в рассмотрение некоторое число подобия режимов течения b_{H} , изменяющееся от 1 до 2 при изменении режима от ламинарного до квадратичной области турбулентного:

$$b_{\scriptscriptstyle H} = I + \frac{\lg Re_{\scriptscriptstyle \phi}}{\lg Re_{\scriptscriptstyle KB}},\tag{16}$$

где:

 $Re_{\phi} = \frac{V_{cp} \cdot d}{v}$ -фактическое число Рейнольдса.

При $Re_{\phi} > Re_{\kappa \theta}$ следует принимать $Re_{\phi} = Re_{\kappa \theta}$, поскольку трубопровод работает в квадратичной области сопротивлений, и $b_{\nu} = 2$

Для гидравлических расчетов течения в квадратичной области сопротивлений, когда коэффициент λ не зависит от Re, формула (12) преобразуется в формулу Прандтля для шероховатых труб:

$$\sqrt{\lambda} = \frac{0.5}{lg\left(\frac{3.7d}{k_2}\right)} \tag{17}$$

В переходной области гидравлических сопротивлений коэффициент λ увеличивается (по сравнению с его значением в квадратичной области) с уменьшением числа Рейнольдса. На основании результатов расчетов можно рекомендовать следующую формулу для определения коэффициента λ , аппроксимирующую формулу (12), но позволяющую определять коэффициент λ с первого счета:

Эта формула позволяет рассчитать коэффициент λ для всей области турбулентного течения жидкости, что показано на рис. 3.