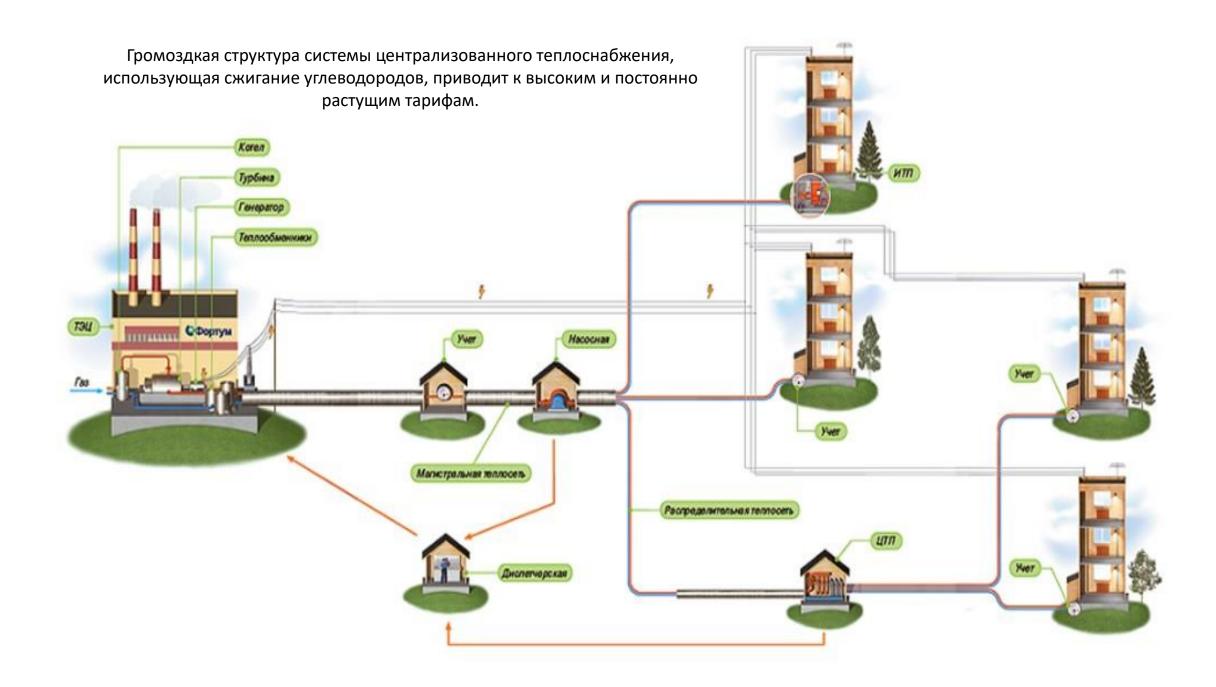
Дорогой Президент, дорогой Председатель Правительства, дорогие инвесторы, дорогие государственные чиновники отрасли ЖКХ и энергетики, проблема «гнилых труб» в теплоснабжении, высоких тарифов в крупных городах, а особенно на Дальнем Востоке, Крайнем Севере и Сибири - самая сложная и многоаспектная задача.

Мы не будем вдаваться в детали проблем централизованного теплоснабжения, а только внимательно проанализируем как в настоящее время отапливаются наши здания. Для того, чтобы отопить многоэтажный жилой дом, где-то за городом строится огромная ТЭЦ, в которой для получения энергии тепла сжигается уголь, мазут, газ - одним словом, углеводороды, которые не только дорогие, но при сжигании загрязняют окружающую среду. Если посмотреть последующие слайды, то путь этого тепла до дома очень затратный. И все эти затраты оплачиваются потребителями. И самое главное, что остатки дошедшего до дома тепла уходят через стены, окна, вентиляционную систему, канализацию, безвозвратно в окружающую среду. Что это? Кощунственная бесхозяйственность или экономическое преступление перед своей страной, перед своим народом, когда бедные пенсионеры и малоимущие семьи, уже не могут жить в этих домах, так как нет средств оплачивать постоянно растущие тарифы.

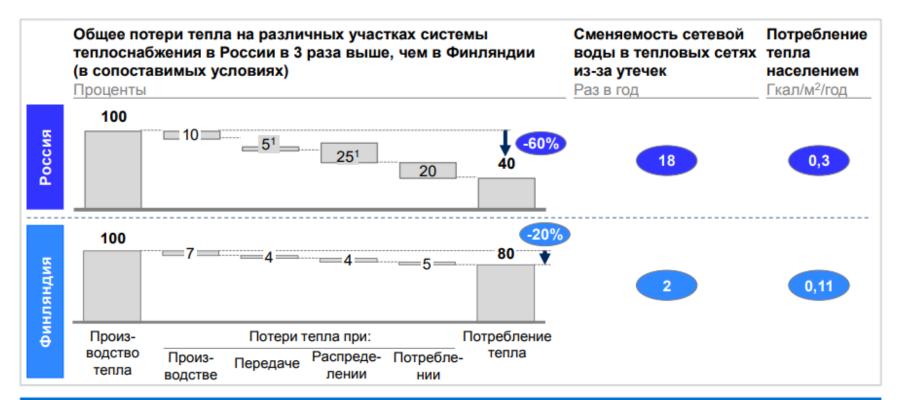
Второй проблемой такой системы теплоснабжения наших домов является старение системы транспортировки тепла магистральных и распределительных трубопроводов, которые находятся под дорогами, тротуарами. И во всех городах нашей страны все чаще и чаще (особенно зимой) происходят крупные аварии, к которым мы уже стали привыкать. Счет аварий уже идет на тысячи. По несколько десятков бригад коммунальщиков всю зиму в городах курсируют от одного порыва к другому, чтобы вернуть тепло и горячую воду в целые микрорайоны с больницами, детскими садиками, школами. А каждая авария — это огромные средства. Износ трубопроводов тепловой инфраструктуры страны достиг критической отметки. Замен трубопроводов все меньше и меньше, а аварий все больше и больше. Заменить трубу теплотрассы в городе это разрушить дорогу с асфальтовым покрытием, а затем все это восстановить.

И последняя, третья проблема. Война монополий производителей тепловой энергии. «Возня» между крупными федеральными генераторами тепловой энергии ТЭЦ, ГРЭС и муниципальными котельными, кто станет ЕТО (Единой Теплоснабжающей Организацией) закладывает социальный взрыв в обществе. Это ЕТО, разгребая вековую проблему с «гнилыми трубами», будет вкладывать огромные бюджетные средства, да еще получать прибыль и аккуратно все перекладывать на потребителя, увеличивая тарифы. А потребитель может и не выдержать. А увеличения тарифов не допустит Регулятор (Федеральная служба по тарифам России). А это значит, что инвестирования средств в эту область от частных инвесторов не будет.


Где выход? Зарубежный опыт использования обоих системных подходов показывает, что необходимо прежде всего снижать тепловые потери.

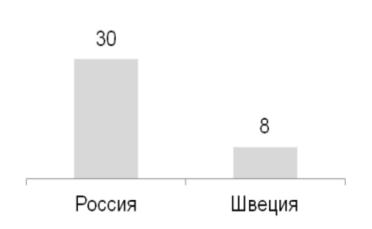
Позвольте предложить вашему вниманию систему автономного отопления и горячего водоснабжения на принципе возврата ранее созданного тепла

Отказаться от всякой регулировки тарифов, но установить разумный потолок, не допускающий социального взрыва в обществе. Допустить на рынок тепловой энергии поставщиков способных обеспечить потребителей устойчивым безаварийным теплом по тарифам не выше установленного потолка.

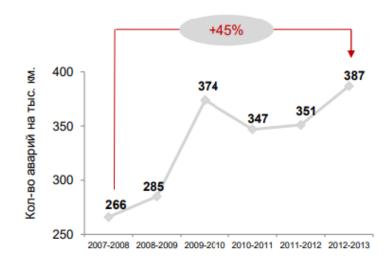

При таких условиях мы можем предложить свою испытанную систему автономного теплоснабжения и горячего водоснабжения на принципе возврата всей ранее полученной тепловой энергии в здание. Мы радикально меняем принцип и подход в организации отопления помещений посредством установок в зданиях тепловых насосов-утилизаторов тепловой энергии. Над каждым зданием имеется или монтируется из легких светопрозрачных конструкций чердак (техническое название «объемный накопитель тепловой энергии»). В него стекается на теплоносителе (воздухе) вся тепловая энергия, образованная в здании. Это тепло отопления, тепло, образующееся в процессе жизнедеятельности жильцов, и солнечное тепло, поступающее через светопрозрачные конструкции кровли. Тепловой насос-утилизатор, пропуская через себя теплоноситель, отбирает тепло, уравнивая с температурой наружного воздуха. После этого, некоторый объем теплоносителя выбрасывается в окружающую среду. Это позволяет обогатить кислородом воздушное пространство здания. И что особенно важно: возникающее пониженное давление воздуха внутри здания существенно уменьшает потери тепла через ограждающие конструкции, уменьшает тепловое давление на них. И все же, если потери тепла возникают, они компенсируются теплом от деятельности людей и солнечным теплом. Тепло из канализации отбирается также тепловым насосомутилизатором «вода-вода».

При утилизации поступающего тепла насос на каждый затраченный для своей работы квт электроэнергии увеличивает тепловую характеристику теплоносителя в 3-4 раза. Из опыта эксплуатации такой системы в течение года установлено, что дополнительное тепло может понадобиться несколько раз в год при затяжных низких температурах зимой. В остальное время года внутри здания производится достаточно тепла, чтобы покрывать потребности в отоплении и горячем водоснабжении. Таким образом, окупаемость предлагаемой системы можно оправдать за несколько лет при постоянном тарифе. При этом проблема "гнилых труб" перестает существовать, ощутимо экономится топливо и уменьшаются выбросы СО2.

Потери тепловой энергии


Основная причина высоких потерь в России:

- Высокий износ и недоинвестированность системы теплоснабжения;
- "Перетопы" и отсутствие необходимой регулировки при генерации тепла;
- Энергозатратные, отсталые технологии передачи и распределения тепла;
- Недостаточное регулирование внутридомовых систем теплоснабжения (синдром "открытых форточек« и "двойных одеял").


Надежность в тепловых сетях

Растет прогрессирующими темпами износ тепловых сетей. Как следствие – высокие потери и аварийность

Потери в тепловых сетях, %

Удельная аварийность в магистральных тепловых сетях в ОЗП

Проблемы в системах централизованного теплоснабжения

Перекрестное субсидирование

- между электричеством и теплом
- между паром и теплом
- между промышленностью и населением
- между территориями

Нормативы на отопление в домах различной этажности, построенных до 1999 г, Гкал/м²

Нормативы в Кирове и Ижевске на отопление в однотипных домах значительно отличаются! при схожести климата и географических условий

4

Накопленные неплатежи в системе составляют более 180 млрд. руб.

(только крупная генерация)

5

Износ, аварийность

- 31% мощностей отработали нормативный срок службы
- 68% теплосетей имеют 100% физический износ

Только в теплоснабжении продолжается рост аварийности

Киров Ижевск

0,0160

выводы

Уход потребителей из системы централизованного теплоснабжения

Неэффективность ТЭЦ на ОРЭМ.

Рост стоимости э/э

Вывод объектов генерации тепловой энергии из эксплуатации

«Котельнизация» Пережог топлива 100 млрд.руб. в год

Отсутствие инвестиций

Строительство замещающих мощностей за счет бюджетной системы

Тарифы на отопление для населения, с 01.07.2015 (без НДС), руб./Гкал

•	//	
г.Тольятти	1 137	
г.Самара	1 236	
г.Пенза	1 256	
г.Саранск	1 273	
г.Йошкар-Ола	1 303	
г.Ижевск	1 308	
г.Оренбург	1 312	
г.Киров	1 328	
г.Екатеринбург	1 338	
г.Чебоксары	1 353	
г.Саратов	1 413	
г.Пермь	1 423	
г.Ульяновск	1 459	
г.Владимир	1 574	
г.Воркута	1 650	
г.Дзержинск	1 699	
г.Иваново	1 728	

Тарифы в Иваново и Саранске отличаются в 1,4 раза! 70% тарифа затраты на топливо (газ) - разница в тарифах необъяснима

Примеры тарифов на тепловую энергию в 2013 году

Регион	Муниципальное образование	Тариф (руб/Гкал)
Камчатский край	Запорожское сельское поселение	103,09
Ханты-Мансийский автономный округ	Сосновка	200,51
Ханты-Мансийский автономный округ	Хулимсунт	227,40
Тверская область	Городское поселение город Удомля	229,08
Пензенская область	Никольское	237,28
Смоленская область	Город Десногорск	250,79
Ханты-Мансийский автономный округ	Лыхма	252,08
Ставропольский край	Казьминский сельсовет	272,71
Алтайский край	город Заринск	282,60
Чукотский автономный округ	село Янранай	16 282,74
Красноярский край	поселок Чиринда	17 514,89
Чукотский автономный округ	село Энмелен	18 410,54
Чукотский автономный округ	село Инчоун	18 922,98
Красноярский край	поселок Тутончаны	18 985,45
Магаданская область	село Ямск	19 196,25
Красноярский край	Таежинское	19 882,84
Чукотский автономный округ	село Ванкарем	22 055,37
Чукотский автономный округ	село Энурмино	23 522,35
Республика Калмыкия	Яшалтинское	39 405,45
Чукотский автономный округ	село Ламутское	39 479,59
Красноярский край	поселок Ессей	42 914,88
Чукотский автономный округ	село Чуванское	69 736,08

Тарифы в 2018 году ориентировочно в два раза больше

ИСТОЧНИК: ЕИАС ФСТ

Дополнительные расходы бюджета

Ежегодные субсидии бюджетной системы в отрасль теплоснабжения

(без учета субсидий за ЖКУ)

Фактические ≈150 млрд. руб.

(≈10% НВВ отрасли)

Потребность ≈200 млрд. руб.

(≈13% HBB отрасли)

По данным опроса субъектов РФ, проведенного Минэнерго России в 2015 году

Необходимы кардинальные изменения в теплоснабжении

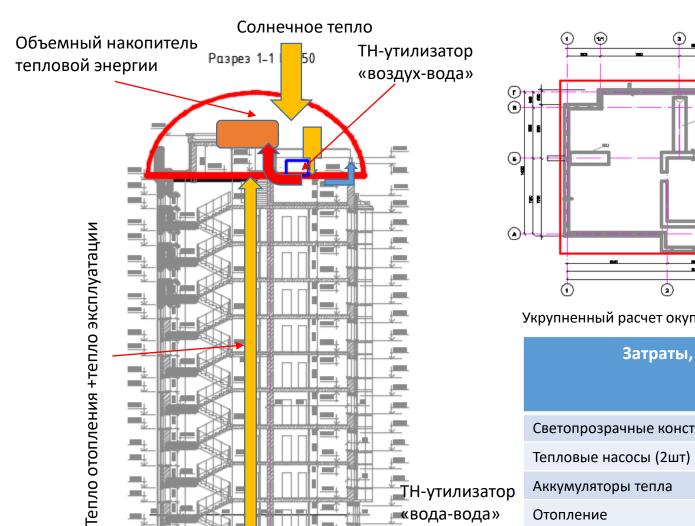
Потребитель – недоволен

- Ежегодный рост тарифов на фоне отсутствия улучшения качества и надежности
- Оплата технологической и коммерческой неэффективности
- Рост социальной напряженности
- Существенный объем перекрестного финансирования

Бизнес - недоволен

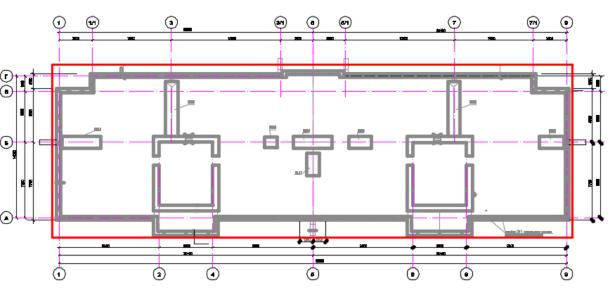
- Неэффективность систем теплоснабжения
- Отсутствуют инвестиционные стимулы
- Регулирование провоцирует сохранять высокие издержки

Государство – недовольно


- Государство выполняет несвойственные функции по оптимизации за счет бюджета систем теплоснабжения
- Полное регулирование, избыточная бюрократическая работа
- Рост аварийности и технологического отставания

Выход – изменение логики государственного регулирования отрасли! Создание внутренних стимулов для преодоления вызовов в теплоснабжении в интересах потребителей!

Наглядное пособие тепловых потерь в фотографиях


ÓÓ

(1)

Аккумуляторы

тепловой энергии

ТH-утилизатор _«вода-вода»

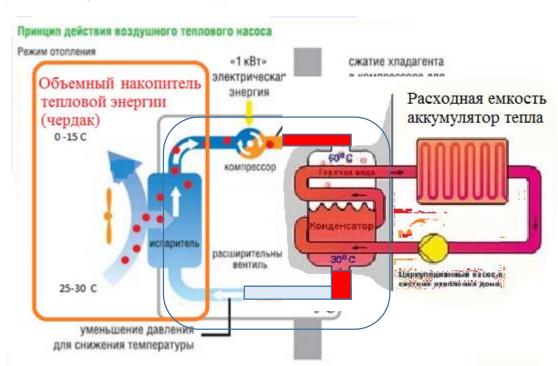
Укрупненный расчет окупаемости локальной системы теплоснабжения и горячего водоснабжения

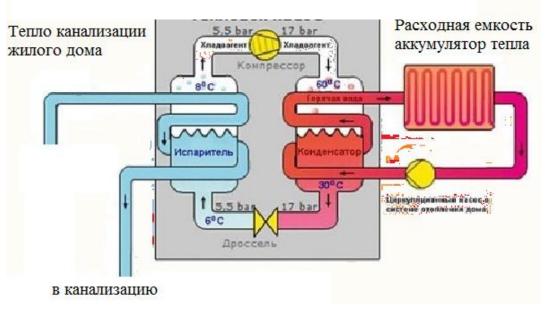
Затраты, тарифы	Стоимость (тыс.руб)	Оплата услуг за год	Эксплуат. зтраты за год
Светопрозрачные конструкции	4 000		
Тепловые насосы (2шт)	2 000		
Аккумуляторы тепла	1 000		
Отопление		3 200	
Горячее водоснабжение		1 000	
Издержки и обслуживание			1 200
Электроэнергия на работу системы			1500

Расчет окупаемости

3200 +1000 -1200-1500=1500 тыс.руб. 7000/1500=4.66 года (5 лет) Отсутствие налоговых нагрузок

Более подробно о принципе возврата тепла в здание


Схема тепловых потерь в многоэтажном



Тепло потерь инфильтрации в нашей системе извлекается из тепла объемного накопителя тепловой энергии где собирается тепло от отопления, дополнительное тепло от жизнедеятельности проживающих, а также тепло солнечной энергии через светопрозрачные конструкции покрытия. Это тепло отбирается тепловым насосом — утилизатором «воздух-вода», установленным жилого дома на чердаке.

Тепло потерь от горячего водоснабжения и приготовления пищи, уходящее в канализацию, отбирается тепловым насосом «водавода», установленным в подвале здания.

Все это тепло эффективно отбирается с помощью усовершенствованного нашей компанией теплового насоса. Таким образом, потери тепла через стены и окна с лихвой компенсируется теплом от жизнедеятельности и солнца. А производительность теплового насоса 1 к 4-5 (электроэнергиятепло), гарантирует устойчивость получения тепла для отопления и горячего водоснабжения..

Дорогие все, от кого будет зависеть развитие идеи кардинального перехода от централизованной, затратной, грязной системы отопления и горячего водоснабжения к локальной, на принципе возврата тепловой энергии конечного потребителя без сжигания углеводорода! Хочу сказать - это реально и имеет право на жизнь, если не в нашей стране то в других странах, где отсутствует углеводородное топливо, где государство заботится об экологии, где государство заботится об уменьшении издержек, чтобы выпускаемая продукция была качественнее и дешевле. https://yadi.sk/i/2TbaxnnG3Pcdxo - это ссылка на статьи журнала, где рассказано, как наша компания много лет работала над проблемой энергосбережения и новыми строительными технологиями.

Мы надеемся, что наше предложение будет поддержано государством в лице любого инвестора, патриота нашей страны, особенно Дальневосточного края, где очень маленькая плотность населения, и все блага цивилизации очень дорогие; региона, где экономическое развитие не может расти из-за больших издержек на производство тепловой энергии, а соответственно и самой продукции.

Мы готовы отстаивать свое предложение и идею перед светилами науки и компетентными специалистами в этой области.

Мы надеемся на поддержку Технопарка «Русский остров» в деле продвижения этой идеи на рынок, где мы можем создать пилотный проект реально действующей модели нашей идеи.

С уважением, руководитель проекта Харченко Михаил Фёдорович, генеральный директор ООО «ИК «Жизненный Уровень».

Тел. +7 914 964 5383 Электронный адрес <u>mrtv_vladivostok@mail.ru</u>