Building airtightness in Norway: Design, market transformation and cost considerations

Peter G. Schild *
Tormod Aurlien †
Sverre Holøs *
Thor-Oskar Relander ‡

Peter.Schild@sintef,no
Tormod.Aurlien@umb.no
SverreB.Holos@sintef.no
Thor.Oskar.Relander@ntnu.no

- * SINTEF Building & Infrastructure, Oslo
- † The Norwegian University of Life Sciences (UMB), Ås
- ‡ Norwegian University of Science & Technology (NTNU), Trondheim

SINTER

SINTEF Building and Infrastructure

Airtightness in Norway today

- Envelope airtightness:
 - Default values: $n_{50} \le 2.5$ for houses, $n_{50} \le 1.5$ for all other buildings
 - Minimum value: $n_{50} \le 3.0$
 - Optional passive house standard (NS 3700): n₅₀ ≤ 0.6
- Ventilation system airtightness
 - Most systems: Class C (round ductwork with prefitted gaskets)
 - Minimum value: Class B
- How do we document compliancy to air-tightness requirements?
- Documented design is necessary, but not sufficient
- Measuring is desirable

(1) SINTEF

SINTEF Building and Infrastructure

Early wind-tight stage pressurization tests

- Emphasis on wind barrier
- Well suited to normal construction order (windbarrier first)
- Leakage points easily detected visually & by feeling with hand (depressurized)
- Very easy and cheap repair at this stage

Compliance control

- Advocate use of simple & cheap test equipment for builders
- 3rd party control Required for Class A label.
- Better QA-schemes in future?

(1) SINTEF

(1) SINTEF

Costs related to achieving better airtightness

- Often no or small increase in cost
- **IF** there is minimum degree of <u>awareness</u> during building (awareness that measurements will be performed)
- IF early wind tight measurement is performed
- Small investment in measuring equipment
- Large cost, if high leakage number is surprisingly measured and one have to try to repair in after hand...

(1) SINTEF

SINTEF Building and Infrastructure

16

Training by demonstration

 Example: Single family dwelling 110 m² (V = 264 m³)

Requirements: $n_{50} \le 2.5 / h$

2,5 /h x 264 m³ = **660** m³/h @ 50 Pa

Hole with diameter 100 mm "leaks" 221 m³/h @ 50 Pa

3 of these are allowed...

SINTEF Building and Infrastructure

Measurement and standardization

- There is much debate in Norway on standardization
- Harmonization of test methods
- Calculation of volumes, facade areas, etc.
- Tormod Aurlien is Norwegian delegate to the ISO 9972 revision & harmonization with EN 13829.
- We have written a position paper on the need for welldefined and harmonized measuring conventions.
- This is a **ongoing** process

(1) SINTEF

SINTEF Building and Infrastructure

20

Prediciton of potential drafts as part of leakage tests

- This is a contentious issue where some unprofessional testing contractors are using anemometers to locate potential points of drafts (e.g. with a threshold value of 1 m/s at the root of the leakage).
- Plan: MSc student to conduct experimental studies on this topic soon

(1) SINTEF

SINTEF Building and Infrastructure

21

Existing challenges

- New solutions for particular details needed
- Focus on the building process and training
- Example: prefabricated bathroom modules
- Measurement issues

SINTEF

Building and Infrastructure