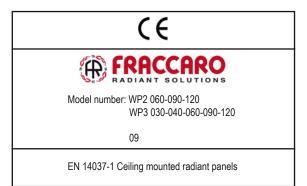
WATERSTRIP



Руководство по проектированию водяных инфракрасных панелей WATERSTRIP

СОДЕРЖАНИЕ:

1.0 ВОДЯНЫЕ ИНФРАКРАСНЫЕ ПАНЕЛИ "WATERSTRIP"

- 1.1 Принцип работы
- 1.2 Конструктивные особенности
- 1.3 Новая линия WP
- 1.4 Модели и размеры
- 2.0 ПРОЕКТИРОВАНИЕ
- 2.1 Тепловая мощность
- 2.2 Расход воды и потеря напора в трубах
- 2.3 Высота монтажа и расстояние между панелями
- 2.4 Примеры компоновки
- 2.5 Примеры монтажа
- 2.6 Примеры расчета
- 3.0 ОХЛАЖДЕНИЕ
- 4.0 СЕРТИФИКАТЫ UNI ISO 9001:2008

1.0 ВОДЯНЫЕ ИНФРАКРАСНЫЕ ИЗЛУЧАТЕЛИ "WATERSTRIP"

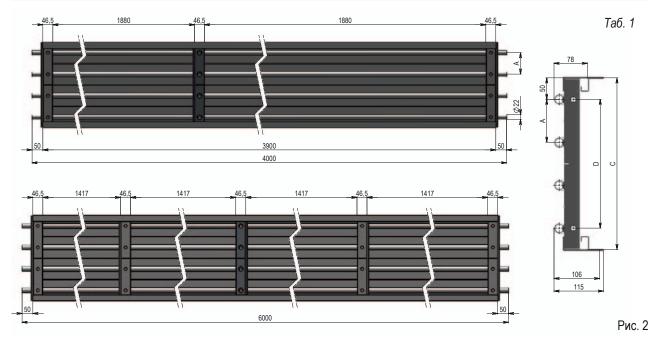
1.1 ПРИНЦИП РАБОТЫ

Водяные инфракрасные излучатели применяются для лучистого обогрева больших помещений производственного или бытового назначения. Они наилучшим образом отвечают требованию бесшумности в работе и отсутствия движения воздушных масс, отлично отапливают как большие, так и небольшие помещения. Отсутствие движения воздуха и, как следствие, стратификации тепла внутри помещения позволяет рассчитывать на относительно небольшие эксплуатационные расходы. Теплоотдача и качество исполнения прошли сертификацию согласно европейской норме ENI 4037, а серия WP при этом является результатом новой современной производственной технологии, защищенной патентом, которая обеспечивает повышенное качество изделия.

Эта же система может эксплуатироваться и в летний период в качестве системы охлаждения, с использованием холодной воды в качестве холодоносителя: таким образом, при небольшом инвестировании можно получить более комфортные условия для работы в летний период.

1.2 КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Инфракрасный водяной нагреватель представляет собой конструкцию из стальных труб, закрепленных к стальному каркасу, верхняя часть которого термоизолирована. Качество изготовления панели обеспечивает, даже после долгого применения, наличие отличного контакта между трубами и экраном, что позволяет достигать высокой степени теплоотдачи конструкции. Для снижения потерь тепла за счет конвекции могут быть добавлены боковые пластины (свесы). В местах стыковки различных секций панелей применяется соединительная панель, стыковка может быть выполнена как сваркой, так и с помощью практичных пресс-фитингов. С верхней стороны панели с интервалом в 1 м устанавливаются траверсы жесткости, которые служат также для подвески прибора. Кроме этого используется покрытие из стекловолокна, защищенное сверху алюминиевым листом, что дополнительно препятствует уходу тепла вверх. Коллекторы квадратного сечения разных типов в соответствии со схемой движения теплоносителя в виде горячей воды или в виде перегретой воды, поставляются не приваренными к панели. Поверхность прибора окрашивается краской белила цвета RAL9010, на заказ возможна окраска и в другие цвета диапазона RAL. Тепловые панели могут эксплуатироваться и с использованием пара в качестве теплового носителя, в этом случае необходимо использовать специальные коллекторы.


1.3 Новая линия WP

Новая серия WP, защищенная патентом, отличается привычной надежностью и гибкостью водяных излучателей Fraccaro и имеет следующие наиболее важные характеристики:

- Труба из оцинкованной стали Ø 22 мм, номинальный размер согласно спецификации для всех прессфитингов Ø 22 мм;
- Теплоизлучающая панель с двойной защитой: из стального оцинкованного и предварительно окрашенного проката;
- Самонесущий профиль;
- Высокая монтажная гибкость с возможностью подвеса к фиксированным траверсам с интервалами 1,5 метров; максимальная свобода благодаря наличию передвигающихся крюков;
- Новые ассиметричные коллекторы для сбалансированного потока, что позволяет достичь бо́льшей равномерности температуры на панели.

1.4 МОДЕЛИ И РАЗМЕРЫ СЕРИЯ WP

Модели Watertrip – лини	яWP	WP2-060	WP2-090	WP2-120	WP3-030	WP3-040	WP3-060	WP3-090	WP3-120
Количество труб		4	6	8	3	4	6	9	12
Наружный диаметр труб	[MM]		22				22		
Межосевое расстояние между трубами	[мм]		150				100		
Количество воды	[л/м]	1,13	1,70	2,27	0,9	1,13	1,70	2,55	3,40
Вес панели без воды	[кг/м]	7,81-7,90 11,40-11,60 14,99-			5,09-5,15	6,98-7,05	10,01-10,12	14,54-14,69	19,06-19,26
Вес панели с водой [кг/		8,94-9,03	13,10-12,07	17,26-17,45	5,99-6,05	8,11-8,18	11,71-11,82	17,09-17,24	22,7-22,46

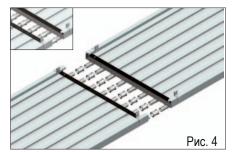
Высота [мм]	Позиция	WP2-060	WP2-090	WP2-120	WP3-030	WP3-040	WP3-060	WP3-090	WP3-120
Межосевое расстояние между трубами	[A]		150				100	`	
Ширина панели Waterstrip	[B]								
Расстояние между передвижными крюками	[C]	550	850	1150	300	400	600	900	1200
Поперечное расстояние между отверстиями подвеса	[D]	450	750	750-1050	200	300	500	800	400-1100

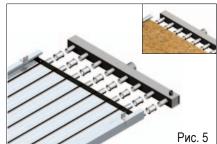
Таб. 2

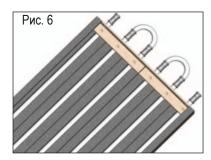
Коллектор

Размеры коллегтора для Waterstri	p	serie WP
Размеры коллектора квадратного сечения	[мм]	50x50
Наружный диаметр труб для пресс-фитинга	[мм]	22
Входной диаметр коллектора (внутренняя резьба)	[дюймы]	1" 1/4
Водяной или воздушный патрубок (внешней резьбой)	[дюймы]	3/8"

Таб. 3




Обозначение:

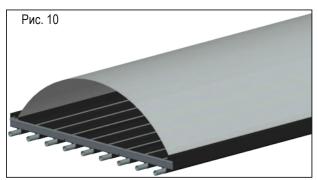

- 1. Коллектор с квадратным сечением
- 2. Подсоединение 1" 1/4
- 3. Слив 3/8"

Соединение панелей и коллекторов

Для соединения панелей WATERSTRIP между собой и с коллектором используются пресс-фитинговые соединения. Такого рода соединение обеспечивает отличную герметичность в соответствии нормами. Данные соединения используются и потому, что труба, применяемая в панелях как \emptyset 28 мм, так и \emptyset 22 мм точно соответствует размерам большинства производителей пресс-фитингов. Стандартные панели могут использоваться при температурах до 120 °C и рабочем давлении до 4 бар. На заказ имеются специальные панели с максимальным рабочим давлением до 16 бар при температуре до 180 °C. Пресс-фитинги могут использоваться при давлении до 16 бар при максимальной температуре 95 °C, или же 4,5 бар при максимальной температуре до 148 °C. При необходимости можно осуществить сварные стыки.

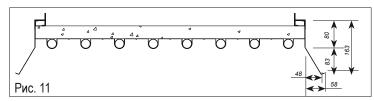
Способы крепления панелей

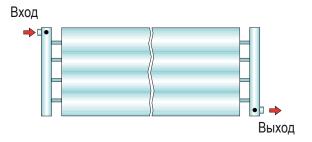
Крепление нагревательных панелей WATERSTRIP к несущим конструкциям кровли можно реализовать двумя способами, показанными на следующих рисунках.



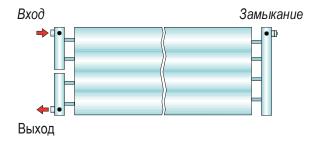
Крепление может быть осуществлено при помощи двух отверстий, расположенных с торцов траверс усиления (смотри расположение и расстояния в разделе Размеры Тепловой Панели. В отверстия вставляются крюки, к которым закреплена цепь. Цепь крепится к несущим конструкциям производственного помещения с помощью дюбелей (если это ж/б) или с помощью стальным поперечин. В случае, если поперечины нельзя использовать в качестве точек подсоединения, например, когда имеются ограничения по типу кровли, можно использовать передвижные крюки (комплектующие, поставляемые фирмой Fraccaro на заказ) или же можно выполнить отверстие в самонесущем бордюре для вставки болтов с проушиной в качестве крепежа. Это позволит закрепить тепловую панель в любом месте, где имеется возможность крепежа в кровле.

Верхняя пластина для спортивных залов

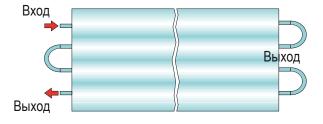

В случае монтажа тепловых панелей в спортзалах или спортивных центрах возможна поставка защитных пластин, которые устанавливаются в верхней части тепловой панели для того, чтобы мяч или любой другой спортивный предмет не застрял на них сверху.


Боковые свесы

Нагревательные панели распространяют тепло частично за счет лучистого излучения (большая часть) и частично за счет тепловой конвекции (меньшая часть). В некоторых случаях, когда высота помещений очень высокая или где присутствует ощутимое движение воздуха, часть отдаваемой конвекционной энергии может возрасти, что в свою очередь уменьшит инфракрасное излучение с соответствующим снижением экономичности в эксплуатации оборудования. Чтобы избежать этой проблемы можно использовать боковые свесы (комплектующие), которые создают баръер воздушным потокам, уменьшают эффект конвекции и увеличивают эффект инфракрасного излучения.



Коллектор и его подсоединение



Подсоединение ТИПА D (**HET WP3 - 030**)

Подсоединение ТИПА С

Подсоединение ТИПА С

WP3 - 030 WP3 - 090

Рис. 12

2.0 ПРОЕКТИРОВАНИЕ

2.1 ТЕПЛОВАЯ МОЩНОСТЬ

Серия WP - тепловая отдача на 1 погонный метр нагревательных панелей

		серии WP2 с меж асстоянием 150 м		Мод	цели серии WP3	с межтрубным	расстоянием 100) мм		
	WP2-060	WP2-090	WP2-120	WP3-030	WP3-040	WP3-060	WP3-090	WP3-120		
ΔTm [°K]	Вт/м	Вт/м	Вт/м	Вт/м	Вт/м	Вт/м	Вт/м	Вт/м		
30	144	202	272	93	123	172	246	317		
32	156	218	293	100	133	186	266	343		
34	167	235	315	108	143	200	285	368		
36	179	251	336	115	153	214	306	394		
38	190	267	358	123	163	228	326	420		
40	202	284	380	130	173	242	346	446		
42	214	301	402	138	184	257	367	472		
44	226	318	424	146	194	271	388	499		
46	238	335	447	154	204	286	409	526		
48	250	352	470	162	215	301	430	553		
50	262	369	492	170	226	316	451	581		
52	275	387	515	178	236	331	473	608		
54	287	404	539	186	247	346	495	636		
56	300	422	562	194	258	361	516	664		
58	312	440	585	202	269	377	538	692		
60	325	458	609	211	280	392	561	720		
62	337	476	632	219 227	291	408	583	749		
64	350	494	656		302	423	605	777		
66	363	512	680	236	313	439	628	806		
68	376	531	704	244	325	455	650	835		
70	389	549	728	253	336	471	673	864		
72	402	567	752	261	348	487	696	894		
74	415	586	777	270	359	503	719	923		
76	428	605	801	279	370	519	742	953		
78	441	624	826	287	382	536	766	982		
80	454	642	850	296	394	552	789	1012		
82	468	661	875	305	405	568	812	1042		
84	481	680	900	314	417	585	836	1072		
86	494	699	925	323	429	602	860	1102		
88	508	719	950	331	441	618	884	1133		
90	521	738	975	340	453	635	907	1163		
92	535	757	1000	349	465	652	931	1194		
94	549	777	1026	358	477	669	956	1225		
96	562	796	1051	367	489	686	980	1256		
98	576	816	1077	377	501	703	1004	1286		
100	590	835	1102	386	513	720	1028	1318		
102	604	855	1128	395	525	737	1053	1349		
104	617	875	1154	404	537	754	1078	1380		
106	631	895	1179	413	549	771	1102	1412		
108	645	915	1205	422	562	789	1127	1443		
110	659	935	1231	432	574	806	1152	1475		
112	673	955	1257	441	586	823	1177	1507		
114	687	975	1284	450	599	841	1202	1538		
116	701	995	1310	460	611	859	1227	1570		
118	716	1015	1336	469	624	876	1252	1602		
	 	1035	1362	479		636 894 1277				

Ta6. 4 120 730 1035 1362 479 630 694 1211 100 N S

Серия WP - тепловая отдача пары коллекторов

				Mo	дели серии WP3	с межтрубным	расстоянием 100	0 мм			
	WP2-060	WP2-090	WP2-120	WP3-030	WP3-040	WP3-060	WP3-090	WP3-120			
ΔTm [°K]	Вт	Вт	Вт	Вт	Вт	Вт	Вт	Вт			
30	97	146	183	40	64	95	153	198			
32	105	158	198	44	69	103	165	214			
34	113	170	213	47	74	111	177	231			
36	122	182	228	50	80	119	190	248			
38	130	195	244	54	85	127	203	265			
40	139	207	260	57	91	135	215	282			
42	147	220	276	60	96	144	228	299			
44	156	233	292	64	102	152	241	317			
46	165	246	308	67	107	160	254	335			
48	174	259	325	71	113	169	268	353			
50	183	272	342	74	119	178	281	371			
52	192	286	358	78	125	186	294	389			
54	202	299	375	81	131	195	308	408			
56	211	313	392	85	136	204	321	427			
58	220	327	410	89	142	213	335	445			
60	230	341	427	92	148	222	349	464			
62	239	355	444	96	154	231	363	484			
64	249	369	462	100	161	240	377	503			
66	259	383	480	103	167	249	391	522			
68	268	397	498	107	173	258	405	542			
70	278	412	516	111	179	268	419	561			
72	288	426	534	115	185	277	433	581			
74	298	441	552	119	192	287	433	601			
76	308	455	570	122	192	296	462	621			
78	318	470	589	126	204	306	477	642			
80	329	485	607	130	211	315	491	662			
82	339	500	626	134	217	325	506	682			
84	349	515	645	138	224	334	521	703			
86	360	530	663	142	230	344	535	723			
88	370	545	682	146	237	354	550	744			
90	380	560	701	150	243	364	565	765			
92	391	576	721	154	250	374	580	786			
94	402	591	740	158	256	384	595	807			
96	412	606	759	162	263	394	610	828			
98	423	622	779	166	270	404	626	850			
100	434	638	798	170	277	414	641	871			
102	445	653	818	174	283	424	656	893			
104	455	669	837	178	290	434	671	914			
106	466	685	857	182	297	444	687	936			
108	477	701	877	186	304	455	702	958			
110	488	717	897	190	311	465	718	980			
112	499	733	917	194	318	475	733	1002			
114	511	749	937	198	324	486	749	1024			
116	522	765	957	202	331	496	765	1046			
118	533	781	977	206	338	506	780	1068			
120	544	797	998	211	345	517 796 1091					

Таб. 5

Пример расчета тепловой отдачи

Согласно норме EN 14037 отдача должна рассчитываться по формуле: Q=K(∆tm)n (Q=W/m). Для коллекторов используется та же формула с получением чистой отдачи (Q=W) для каждого коллектора.

Параметр Δ tm указывает на разницу между средней температурой теплоносителя и температурой в помещении (например: теплоноситель вода, температура на входе в нагревательную панель: ti=80°C; температура на выходе: tu=70°C, средняя температура теплоносителя: tm=(ti+tu)/2=75°C; температура в помещении: ta=19°C; следовательно: Δ tm=(tm-ta)=56°C. При Δ tm=56°C получаем следующие значения теплоотдачи:

МОДЕЛЬ	Номинальная теплоотдача	МОДЕЛЬ	Номинальная теплоотдача
WP2-060	300	WP3-040	258
WP2-090	422	WP3-060	361
WP2-120	562	WP3-090	516
		WP3-120	664

Таб. 6

В предыдущих таблицах указаны уже рассчитанные значения Q, при этом значения k и n указаны ниже:

НАГРЕВАТЕЛЬНЫЕ ПАНЕЛИ	Серия WP2 с	межтрубным 150 мм	расстоянием	Серия WP3 с межтрубным расстоянием 100 мм							
HALLIM	WP2-060	WP2-090	WP2-120	WP3-030	WP3-040	WP3-060	WP3-090	WP3-120			
k	2,717	3,696	5,220	1,652	2,196	3,014	4,325 5,691				
n	1,168	1,177	1,162	1,184	1,184	1,189	1,188	1,182			
КОЛЛЕКТОРЫ	Серия WP2 с	межтрубным 150 мм	расстоянием	Се	рия WP3 с мех	ктрубным рас	стоянием 100	мм			
	WP2-060	WP2-090	WP2-120	WP3-030	WP3-040	WP3-060	WP3-090	WP3-120			
k	1,409	2,242	2,841	0,709	1,013	1,501	2,670	2,997			
n	1,244	1,227	1,224	1,190	1,218	1,220	1,190	1,232			

Таб. 7

Процентное соотношение лучистой и конвективной теплоотдачи

Ниже приводиться процентное соотоношение лучистой и конвективной теплоотдачи панелей WATERSTRIP в зависимости от их наклона.

	WP2	2-060	WP2	2-090	WP2	-120		
Угол наклона панелей	Теплоотдача лучистого отопления [%]	Теплоотдача конвекции [%]	Теплоотдача лучистого отопления [%]	Теплоотдача конвекции [%]	Теплоотдача лучистого отопления [%]	Теплоотдача конвекции [%]		
0°	65%	35%	60%	40%	71%	29%		
15°	60%	40%	55%	45%	66%	34%		
30°	55%	45%	50%	50%	61%	39%		
45°	50%	50%	45%	55%	56%	44%	1	
60°	45%	55%	40%	60%	51%	49%		
90°	35%	65%	20%	80%	41%	59%		
	WP3	-040	WP3	3-060	WP3	-090	WP3	-120
Угол наклона панелей	WP3 Теплоотдача лучистого отопления [%]	-040 Теплоотдача конвекции [%]	WP3 Теплоотдача лучистого отопления [%]	-060 Теплоотдача конвекции [%]	WP3 Теплоотдача лучистого отопления [%]	-090 Теплоотдача конвекции [%]	WP3 Теплоотдача лучистого отопления [%]	-120 Теплоотдача конвекции [%]
	Теплоотдача лучистого	Теплоотдача	Теплоотдача лучистого	Теплоотдача	Теплоотдача лучистого	Теплоотдача	Теплоотдача лучистого	Теплоотдача
панелей	Теплоотдача лучистого отопления [%]	Теплоотдача конвекции [%]						
панелей 0°	Теплоотдача лучистого отопления [%] 55%	Теплоотдача конвекции [%] 45%	Теплоотдача лучистого отопления [%]	Теплоотдача конвекции [%]	Теплоотдача лучистого отопления [%] 70%	Теплоотдача конвекции [%]	Теплоотдача лучистого отопления [%] 72%	Теплоотдача конвекции [%] 28%
панелей 0° 15°	Теплоотдача лучистого отопления [%] 55% 50%	Теплоотдача конвекции [%] 45% 50%	Теплоотдача лучистого отопления [%] 66% 61%	Теплоотдача конвекции [%] 34% 39%	Теплоотдача лучистого отопления [%] 70% 65%	Теплоотдача конвекции [%] 30% 35%	Теплоотдача лучистого отопления [%] 72% 67%	Теплоотдача конвекции [%] 28% 33%
панелей 0° 15° 30°	Теплоотдача лучистого отопления [%] 55% 50% 45%	Теплоотдача конвекции [%] 45% 50% 55%	Теплоотдача лучистого отопления [%] 66% 61% 56%	Теплоотдача конвекции [%] 34% 39% 44%	Теплоотдача лучистого отопления [%] 70% 65% 60%	Теплоотдача конвекции [%] 30% 35% 40%	Теплоотдача лучистого отопления [%] 72% 67% 62%	Теплоотдача конвекции [%] 28% 33% 38%

Таб. 8

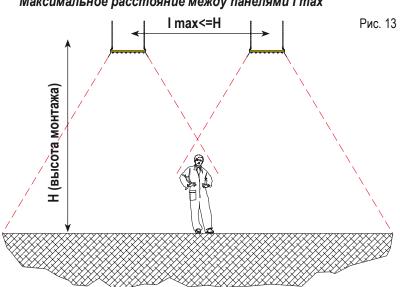
2.2 РАСХОД ВОДЫ И ПОТЕРЯ НАПОРА В ТРУБАХ

В следующих таблицах приводятся значения потери напора для различных моделей, для компенсации потери напора в коллекторах необходимо добавить 5% от расчетных потерь напора. Рекомендуется не превышать максимально указанные напоры, чтобы не создавать риск повышенной скорости воды и, как следствие, повышенного шума и вибрации, а также избегать пониженного напора с тем, чтобы поддерживать движение турбулентного потока: при слишком низкой скорости теплоносителя теплоотдача будет ниже.

			Соединен	ие типа Е	3				Соединен	ие типа С				Соед	инение ти	па D	
модель	WP3-030	WP2-060 WP3-040	WP2-090 WP3-060	WP2-120	WP3-090	WP3-120	WP3-030	WP2-060 WP3-040	WP2-090 WP3-060	WP2-120	WP3-090	WP3-120	WP2-060 WP3-040	WP2-090 WP3-060	WP2-120	WP3-090	WP3-120
кол-во труб	3	4	6	8	9	12	3	4	6	8	9	12	4	6	8	9	12
Подача, л/час		Пот	теря напор	оа, мм H ₂ (D/m			Г	Іотеря напо	оа, мм H ₂ O/	m			Потеря н	напора, мм	H ₂ O/m	
65							1,86	2,49	3,73	4,97	5,59	7,46					
90							3,31	4,41	6,61	8,82	9,92	13,22					
110							4,71	6,28	9,41	12,55	14,12	18,83					
140	1						7,19	9,59	14,39	19,19	21,58	28,78					
170							10,13	13,5	20,25	27	30,38	40,5					
200	0,65						13,48	17,97	26,96	35,94	40,44	53,91	2,66	1,30	0,78	0,65	
225	0,80						16,58	22,11	33,17	44,22	49,75	66,33	3,26	1,60	0,96	0,81	
250	0,96	0,58					19,96	26,62	39,92	53,23	59,89	79,85	3,92	1,92	1,16	0,97	0,56
275	1,14	0,69					23,61	31,48	47,22	62,95	70,82	94,43	4,64	2,28	1,38	1,15	0,68
300	1,33	0,80					27,51	36,69	55,03	73,37	82,54	110,06	5,42	2,66	1,60	1,34	0,78
350	1,74	1,05					36,09	48,12	72,18	96,24	108,27	144,36	7,10	3,48	2,10	1,76	1,02
400	2,20	1,33	0,65				45,65	60,87	91,30	121,74	136,95	182,61	8,98	4,38	2,10	2,23	1,30
450	2,71	1,63	0,80				56,17	74,89	112,33	149,78	168,50	224,67	11,06	5,42	3,26	2,73	1,60
500	3,26	1,96	0,96	0,58			67,61	90,15	135,22	180,30	202,83	270,44	13,30	6,52	3,93	3,29	1,92
550	3,85	2,32	- 	0,58			79,96	106,61	159,92	<u> </u>	-	319,84		7,70	<u> </u>	3,29	2,28
			1,14	<u> </u>	0.05			-		213,22	239,88		15,74		4,64	<u> </u>	-
600	4,49	2,71	1,33	0,80	0,65		93,19	124,25	186,38	248,51	279,57	372,76	18,34	8,98	5,42	4,54	2,65
650	5,17	3,12	1,53	0,92	0,75		107,29	143,05	214,58	286,10	321,87	429,16	21,12	10,34	6,24	5,22	3,06
700	5,89	3,55	1,74	1,05	0,85		122,24	162,98	244,47	325,96	366,71	488,95	24,06	11,78	7,10	5,95	3,48
750	6,65	4,01	1,96	1,18	0,96	0,58	138,02	184,02	276,04	368,05	414,05	552,07	27,16	13,30	8,02	9,72	3,93
800	7,45	4,49	2,19	1,33	1,08	0,65	154,62	206,16	309,24	412,32	463,86	618,48	30,44	14,90	8,99	7,52	4,38
900	9,17	5,53	2,71	1,63	1,33	0,80	190,24	253,65	380,47	507,30	570,71	760,95	37,44	18,34	11,06	9,26	5,42
1000	11,04	6,65	3,26	1,96	1,60	0,96	229,00	305,33	457,99	610,66	686,99	915,99	45,08	22,08	13,31	11,14	6,52
1100	13,06	7,87	3,85	2,32	1,89	1,14	270,82	361,09	541,64	722,19	812,46	1083,28	53,30	26,12	15,74	13,18	7,70
1200	15,22	9,17	4,49	2,71	2,20	1,33	315,64	420,85	631,27	841,70	946,91	1262,55	62,12	30,44	18,34	15,36	8,98
1400	19,96	12,03	5,89	3,55	2,89	1,74	414,01	552,02	828,03	1104,04	1242,04	1656,05	81,50	39,92	24,06	20,15	11,78
1600	25,25	15,22	7,45	4,49	3,65	2,19	523,70	698,26	1047,39	1396,53	1571,09	2094,79	103,08	50,50	30,43	25,49	14,90
1800	31,06	18,72	9,17	5,53	4,49	2,71	644,33	859,11	1288,66	1718,21	1932,99	2577,32	126,82	62,12	37,44	31,36	18,34
2000	37,39	22,54	11,04	6,65	5,41	3,26	775,61	1034,14	1551,21	2068,28	2326,82	3102,43	152,66	74,78	45,07	37,76	22,08
2200	44,22	26,65	13,06	7,87	6,40	3,85							180,54	88,44	53,31	44,65	26,12
2400	51,54	31,06	15,22	9,17	7,45	4,49							210,42	103,08	62,13	52,03	30,44
2600	59,34	35,76	17,52	10,56	8,58	5,17							242,26	118,68	71,53	59,91	35,04
2800	67,60	40,75	19,96	12,03	9,78	5,89							276,00	135,20	81,49	68,26	39,92
3000	76,33	46,01	22,54	13,58	11,04	6,65							311,64	152,66	92,01	77,07	45,08
3200	85,51	51,54	25,25	15,22	13,37	7,45							349,14	171,02	103,08	86,34	50,50
3400	95,14	57,30	28,09	16,93	13,76	8,29							388,44	190,29	114,60	96,06	56,18
3600	105,21	63,41	31,06	18,72	15,22	9,17							429,55	210,43	126,82	106,23	62,13
3800	115,72	69,74	34,17	20,59	16,74	10,09							472,44	231,43	139,49	116,83	68,33
4000	126,65	76,33	37,39	22,54	18,32	11,04							517,07	253,30	152,66	127,87	74,79
4200	138	83,18	40,75	24,56	19,96	12,03								276,01	166,35	139,34	81,49
4400	149,72	90,27	44,22	26,65	21,66	13,06	Ì						Ì	299,56	180,55	151,23	88,44
4600	161,97	97,62	47,82	28,82	23,43	14,12		Ì			Ì			323,94	195,24	163,53	95,64
4800	174,57	105,21	51,54	31,06	25,25	15,22	İ	İ			İ			349,13	210,42	176,25	103,08
5000	187,57	113,05	55,38	33,38	27,13	16,35	i	Ì			İ		Ì	375,14	226,10	189,38	110,76
Подача тах	6000	8000	12000	16000	18000	24000	2000	2000	2000	2000	2000	2000	4000	6000	8000	8000	12000
Подача min	200	260	400	540	620	820	65	65	65	65	65	65	130	200	270	310	410

2.3 ВЫСОТА МОНТАЖА И РАССТОЯНИЕ МЕЖДУ ПАНЕЛЯМИ

В связи с вариьированием высоты установки водяных панелей варьируется также их КПД, что ощущается на поле. Этот фактор очень важен и должен быть учтен в процессе проектирования. Коэффициенты коррекции приведены ниже в следующей таблице.


Высота монтажа, м	6	6,5	7	7,5	8	8,5	9	10	11	12
Коэффициент	1	0,98	0,97	0,96	0,94	0,92	0,9	0,88	0,87	0,86

Таб. 10

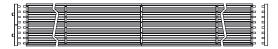
В случае, когда высота помещения больше той, которая указана в таблице, советуем обратиться к нашим специалистам.

Для обеспечения равномерного распределения теплового излучения в центральной зоне обогреваемого помещения, необходимо чтобы максимальное расстояние между водяными панелями не превышало высоту, на которую они смонтированы: І тах<=Н.

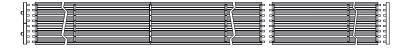
Расчеты КПД, требуемые для установки одного котла и расход воды учитываются БЕЗ учета коеффициента восстановления/сокращения

Максимальное расстояние между панелями I тах

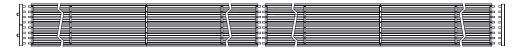
Минимально рекомендуемая высота монтажа:


Средняя	Минимальная высота монтажа (м)													
температура воды (°C)	WP2-060 WP2-090	WP3-040 WP3-030	WP3-060 WP3-090	WP2-120	WP3-120									
60	3,10	3,10	3,20	3,20	3,30									
70	3,20	3,20	3,30	3,30	3,40									
80	3,30	3,30	3,50	3,40	3,60									
90	3,50	3,40	3,70	3,70	3,90									
100	3,70	3,50	4,00	3,90	4,20									
110	4,00	3,60	4,20	4,30	4,40									

Таб. 11


11

2.4 ПРИМЕРЫ КОМПОНОВКИ НАГРЕВАТЕЛЬНЫХ ПАНЕЛЕЙ WATERSTRIP


Ниже приводим отдельные примеры компоновки нагревательных теплоизлучающих панелей WATERSTRIP.

Участок длиной 6 м

Участок 6 м + участок 4 м = линия 10 м

Участок 6 м + участок 6 м = линия 12 м

Рис. 14

Компоновка в длину

Используя стандартные модули длиной 4 м и 6 м можно составить линии любой длины, кратной 2 м, при этом минимально возможная длина составит 4 м. В следующей таблице указаны возможные компоновки в длину.

									(Обш	ая д	дли	на, і	M			•							
М	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
элементы длиной 4 м	1		2	1		2	1		2	1		2	1		2	1		2	1		2	1		2
элементы длиной 6 м		1		1	2	1	2	3	2	3	4	3	4	5	4	5	6	5	6	7	6	7	8	7

Таб. 12

2.5 ПРИМЕРЫ МОНТАЖА

Подсоединение типа D

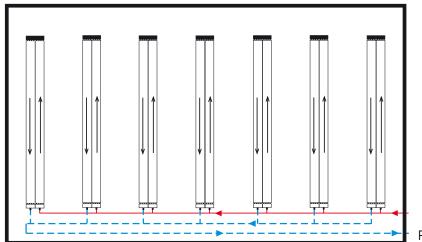


Рис. 15

Подсоединение типа В

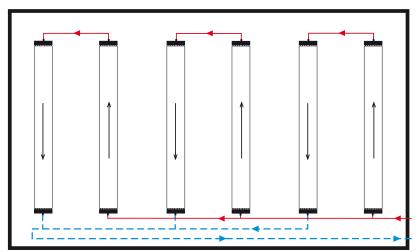


Рис. 16

Подсоединение типа D

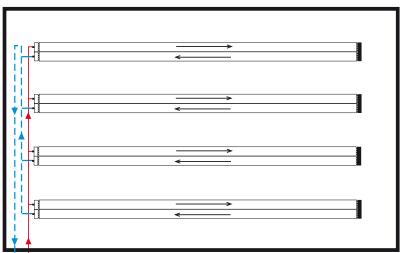
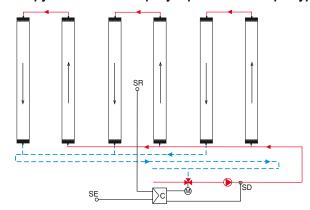
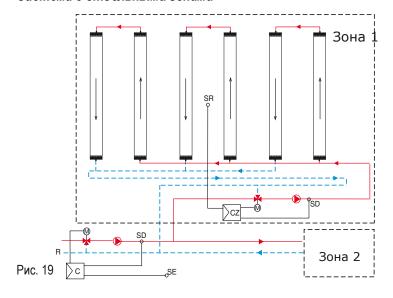


Рис. 17


13

Терморегулировка и балансировка системы

Для оптимизации системы и оптимизации теплоотдачи рекомендуется отрегулировать систему так, чтобы обеспечить постоянное значение подачи воды в нагревательные панели. С этой целью можно использовать модульные трехходовые смесительные клапаны на подающей трубе.

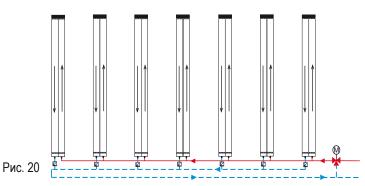

Сбалансированную систему, обеспечивающую проектный объем подачи на панели, для простой системы с одинаковыми линиями можно получить с помощью трехтрубного возврата, для более сложных систем или для систем с отдельными зонами целесообразно использовать автоматические стабилизаторы подачи на выходе из каждой нагревательной панели. Наилучшая регулировка температуры достигается с помощью одного или нескольких бульбообразных зондов. Ниже на рисунках приводятся ориентировочные схемы сбалансированных систем с одной или несколькими зонами.

Система с наружным зондом и регулировкой температуры на входе

Рис. 18

Система с отдельными зонами

Описание:


СР: Главный блок управления СZ: Блок управления зоной

М: Моторизованный трехходовой клапан

SD: Зонд на входе SE: Наружный зонд SR: Зонд в помещении

A: ВходR: Выход

Система со стабилизаторами подачи

Шаровой зонд и цифровой термостат вкл/выкл

Рис. 21

2.6. ПРИМЕРЫ РАСЧЕТА

Пример А - помещение 50х20 высотой 7 м.

Исходя из значения внутренней температуры Ta=17 °C, рассчитываем, что требуется мощность равная 130 кВт. Предполагается, что вода на входе равна Ti=80 °C, а на выходе Tu=70 °C, из чего получаем среднюю температуру Tm=(Ti+Tu)/2=75 °C и $\Delta Tm=Tm-Ta=58$ °C.

Хорошим выбором для такой системы могло бы стать использование модели WP3-120 в линию длиной 48 м.

Из таблицы значений теплоотдачи с учетом температуры Δ Tm=58 °C для модели WP3-120 соответствует теплоотдача 692 Вт/м для, а также 445 Вт для пары коллекторов.

Разделив требуемую мощность на теплоотдачу получаем необходимых метраж:

130000/692 = 187,9 метров

При 4 линиях получаем 48 х 4 = 192 метра

Теплоотдача одной линии: (48 м) x (692 Bт/м) = 33216 Bт

Теплоотдача пары коллекторов: 445 Вт.

Общая теплоотдача линии: 33216 + 445 = 33661 Вт

Общая теплоотдача системы: 33661 Вт х 4 линии = 134644 Вт

Учитывая, что высота монтажа более 6 метров, необходимо откорректировать значение теплоотдачи. Из таблицы высот монтажа получаем для высоты 7 метров коэффициент коррекции 0,97.

Откорректированная мощность: 134644 х 0,97 = 130605 Вт, система соответствует.

Потери напора

Из расчета вытекает, что одна линия отдает 33,216 кВт, что составляет 33,216 х 860 = 28566 ккал/час. Тепло, отданное одной линией – это тепло, отданное водой согласно формуле: Q = G x сP x Δ T, где Q и является тепловым потоком (28566 ккал/час), сP – удельное тепло воды (л ккал/°C), Δ T – разница между температурой на входе Ti=80 °C и температурой на выходе Tu=70 °C (Δ T=10 °C), а G – расход воды, который составляет G = Q/(cP x Δ T) = 28566/(л x 10) = 2856,6 литров/час.

Из таблицы потери напора получаем потерю равную 5,89 мм водяного столба на метр при подсоединении типа В и 39,92 мм водяного столба на метр при подсоединении типа D.

Добавляем 10% на коллекторы и получаем, что общая потеря на линии длиной 48 метров составляет:

Подсоединение типа В: (48 х 5,89) х 1,1 = 311 мм в.с.

Подсоединение типа D: (48 x 39,92) x 1,1 = 2108 мм в.с.

Пример В - помещение 50х20 высотой 5 м с хорошей теплоизоляцией.

Требуется 105 кВт при Ta=15 °C. Сохраняя равными все параметры предыдущего примера, получаем Δ Tm = 60 °C.

В данном случае целесообразно использование модели WP3-090, которая при Δ Tm = 60 °C дает теплоотдачу 561 Вт/м, а коллекторы отдают 349 Вт.

При 4 линиях получаем 48 х 4 = 192 метра

Теплоотдача одной линии: (48 м) x (561 Bт/м) = 26928 Bт

Теплоотдача пары коллекторов: 349 Вт.

Общая теплоотдача линии: 26928 + 349 = 27277 Вт

Общая теплоотдача системы: 27277 Вт х 4 линии = 109108 Вт, система соответствует.

Потери напора

Из расчета вытекает, что одна линия отдает 26,928 кВт, что составляет 23158 ккал/час.

Из расчета получаем $G = Q/(cP \times \Delta T) = 23158/(\pi \times 10) = 2315,8$ литров/час.

Из таблицы потери напора получаем потерю равную 7,45 мм водяного столба на метр при подсоединении типа В и 52,03 мм водяного столба на метр при подсоединении типа D.

Общая потеря на линии длиной 48 метров составляет:

Подсоединение типа В: (48 х 7,45) х 1,1 = 357,6 мм в.с.

Подсоединение типа D: (48 x 52,03) x 1,1 = 2747 мм в.с.

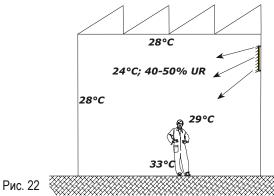
3.0 ОХЛАЖДЕНИЕ

Система лучистого отопления WATERSTRIP может успешно использоваться и в летний период для улучшения комфорта в помещении и, как следствие, увеличения производительности.

Система WATERSTRIP, рассчитанная и спроектированная для работы на охлаждение летом, помимо зимнего отопления, приводит к быстрой окупаемости инвестиций.

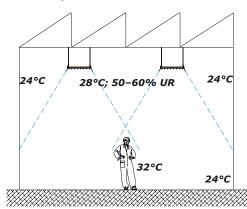
В сравнении с классической системой подготовки воздуха система лучистого охлаждения дает неоспоримые преимущества:

- При равном ощущении комфорта температура воздуха более высокая;
- Бесшумность;
- Меньшее движение воздуха;
- Гигиенично;
- Низкие затраты на монтаж и эксплуатацию;
- Чрезвычайно низкое электропотребление.


Аналогично работе в зимний период значительная экономия достигается за счет того, что способом излучения охлаждаются поверхности, а не огромные объемы воздуха. Комфорт достигается за счет эффективной температуры: Top = (Ta+Tp)/2: так при системе подготовки воздуха значение Top, равное 25 градусам, может быть достигнуто при температуре воздуха Ta = 23 °C и температуре стен Tp = 27 °C. При использовании системы Waterstrip тот же результат достигается при Ta = 27 °C и T = 23 °C.

Работа при более высокой температуре воздуха приводит к значительной экономии как в установленной мощности, так и в потреблении энергии. Затраты по эксплуатации также значительно ниже, так как система Waterstrip не требует затратного техобслуживания и большого электропотребления.

Наилучшие результаты при таком типе системы достигаются совместной работой с системой влагопоглощения: необходимо, чтобы температура на поверхности нагревательной панели не опускалась ниже температуры точки росы с тем, чтобы не конденсировалась влага, имеющаяся в воздухе, с последующим капанием.


Для более детальной информации относительно способов проектирования и монтажа систем охлаждения свяжитесь с нашими коммерческими представителями.

Традиционная воздушная система климатизации

Неудобство из-за неоднородности температуры в различных потоках воздуха

Лучистая климатизация

Поверхностная температура тела однородна, комфорт.

Рис. 23

4.0 СЕРТИФИКАТЫ UNI EN ISO 9001:2008

Настоящий документ является собственностью фирмы «Fraccaro Officine Termotecniche S.r.l.». Запрещается воспроизведение или передача электронным, механическим или другим способом какой-либо части данного документа без наличия на то письменного разрешения со стороны фирмы Fraccaro.

Содержание и технические данные в настоящем руководстве могут быть подвергнуты последующим изменениям. Фирма FRACCARO S.r.l. оставляет за собой право вносить такие изменения в любое время в зависимости от технического усовершенствования конструкции или коммерческих требований. В целях постоянного повышения качества своей продукции фирма FRaccaro S.r.l. оставляет за собой право приводить в соответствие таблицы с данными без предварительного уведомления.

FRACCARO

Officine Termotecniche s.r.l. Uff. e Stab.: Via Sile, 32 Z.I. 31033 Castelfranco Veneto (TV) Tel. +39 - 0423 721003 ra Fax +39 - 0423 493223 www. fraccaro.it

E mail: info@fraccaro.it

UNI EN 9001:2008 N°9190.OFFR ISO